4.7 Article

Calculation of the detonation state of HN3 with quantum accuracy

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0029011

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

HN3 is a unique liquid energetic material that exhibits ultrafast detonation chemistry and a transition to metallic states during detonation. We combine the Chebyshev interaction model for efficient simulation (ChIMES) many-body reactive force field and the extended-Lagrangian multiscale shock technique molecular dynamics method to calculate the detonation properties of HN3 with the accuracy of Kohn-Sham density-functional theory. ChIMES is based on a Chebyshev polynomial expansion and can accurately reproduce density-functional theory molecular dynamics (DFT-MD) simulations for a wide range of unreactive and decomposition conditions of liquid HN3. We show that addition of random displacement configurations and the energies of gas-phase equilibrium products in the training set allows ChIMES to efficiently explore the complex potential energy surface. Schemes for selecting force field parameters and the inclusion of stress tensor and energy data in the training set are examined. Structural and dynamical properties and chemistry predictions for the resulting models are benchmarked against DFT-MD. We demonstrate that the inclusion of explicit four-body energy terms is necessary to capture the potential energy surface across a wide range of conditions. Our results generally retain the accuracy of DFT-MD while yielding a high degree of computational efficiency, allowing simulations to approach orders of magnitude larger time and spatial scales. The techniques and recipes for MD model creation we present allow for direct simulation of nanosecond shock compression experiments and calculation of the detonation properties of materials with the accuracy of Kohn-Sham density-functional theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据