4.5 Article

On the relationship between drag and vertical velocity fluctuations in flow over riblets and liquid infused surfaces

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2020.108663

关键词

Riblets; SHS/LIS; Drag reduction; DNS

向作者/读者索取更多资源

Direct numerical simulations (DNS) of flow over triangular and rectangular riblets in a wide range of size and Reynolds number have been carried out. The flow within the grooves is directly resolved by exploiting the immersed-boundary method. It is found that the drag reduction property is primarily associated with the capability of inhibiting vertical velocity fluctuations at the plane of the crests, as in liquid-infused surfaces (LIS) devices. This is mimicked in DNS through artificial suppression of the vertical velocity component, which yields large drag decrease, proportionate to the riblets size. A parametrization of the drag reduction effect in terms of the vertical velocity variance is found to be quite successful in accounting for variation of the controlling parameters. A Moody-like friction diagram is thus introduced which incorporates the effect of slip velocity and a single, geometry-dependent parameter. Reduced drag-reduction efficiency of LIS-like riblets is found as compared to cases with artificially imposed slip velocity. Last, we find that simple wall models of riblets and LIS-like devices are unlikely to provide accurate prediction of the flow phenomenon, and direct resolution of flow within the grooves in necessary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Aerospace

An aerothermodynamic design optimization framework for hypersonic vehicles

Simone Di Giorgio, Domenico Quagliarella, Giuseppe Pezzella, Sergio Pirozzoli

AEROSPACE SCIENCE AND TECHNOLOGY (2019)

Article Computer Science, Interdisciplinary Applications

On algebraic TVD-VOF methods for tracking material interfaces

Sergio Pirozzoli, Simone Di Giorgio, Alessandro Lafrati

COMPUTERS & FLUIDS (2019)

Article Mechanics

On coherent vortical structures in wave breaking

Simone Di Giorgio, Sergio Pirozzoli, Alessandro Iafrati

Summary: The breaking of free-surface waves in a periodic domain is numerically simulated using a gas-liquid Navier-Stokes solver. The solver incorporates novel schemes for interface tracking and utilizes a low numerical dissipation scheme to conserve energy in the discrete form. Both two-dimensional and three-dimensional simulations are performed, and the analysis focuses on energy dissipation, air entrainment, bubble fragmentation, statistics, and distribution. The study identifies coherent vortical structures and highlights the correlation between vortical structures and energy dissipation, demonstrating their close relationship in both the mixing zone and the pure water domain.

JOURNAL OF FLUID MECHANICS (2022)

Article Thermodynamics

Characteristics of turbulent boundary layers generated by different tripping devices

Navid Freidoonimehr, Azadeh Jafari, Maziar Arjomandi

Summary: In this study, a high-fidelity flow visualisation technique is used to investigate the resemblance between a turbulent boundary layer generated by different tripping devices in a lab environment and a naturally developed canonical turbulent boundary layer. The study finds that the blockage created by trips is the main factor affecting the turbulence statistics at a certain downstream distance.

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW (2024)

Article Thermodynamics

Towards optimal 6-variational autoencoders combined with transformers for reduced-order of turbulent flows

Yuning Wang, Alberto Solera-Rico, Carlos Sanmiguel Vila, Ricardo Vinuesa

Summary: This study proposes a method that combines 6-VAEs for modal decomposition and transformer neural networks for temporal-dynamics prediction in the latent space to develop reduced-order models (ROMs) for turbulent flows. The method achieves high reconstruction accuracy and accurate prediction of temporal dynamics.

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW (2024)

Article Thermodynamics

Assessment of Reynolds number effects in supersonic turbulent boundary layers

L. Laguarda, S. Hickel, F. F. J. Schrijer, B. W. van Oudheusden

Summary: Wall-resolved large-eddy simulations were used to investigate the Reynolds number effects in supersonic turbulent boundary layers at Mach 2.0. The study covered a wide range of friction Reynolds numbers and identified trends in various statistics and scaling laws. The size and topology of turbulent structures in the boundary layer were examined, with a focus on the outer-layer motions at high Reynolds numbers. The study also assessed the influence of outer-layer structures on near-wall turbulence and the sensitivity of uniform momentum regions to compressibility.

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW (2024)

Article Thermodynamics

Influence of wall shear stress on the secondary flow in square ducts

A. Doehring, T. Kaller, S. J. Schmidt, N. A. Adams

Summary: In this study, well-resolved large-eddy simulations were used to investigate turbulent duct flows with a square cross section. The influence of a modified wall shear stress on the secondary flow was analyzed by artificially modifying the wall shear stress at one of the four walls. The results showed that the modification led to an asymmetrical distribution of the secondary flow source terms, affecting the momentum distribution. Furthermore, the anisotropy of the Reynolds stress tensor, which induces the secondary flow vortices, was significantly affected by the wall shear stress modulation.

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW (2024)