4.7 Article

The effects of exogenous application of melatonin on the degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca

期刊

ENVIRONMENTAL POLLUTION
卷 274, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.116559

关键词

Rhizosphere; Polycyclic aromatic hydrocarbons; Melatonin; Dehydrogenase activity; Peroxidase activity; Gene expression

资金

  1. Shiraz University of Medical Sciences [20200, IR.SUMS.REC.1398.1117]

向作者/读者索取更多资源

The study demonstrated that melatonin application in the rhizosphere of Festuca grass had a positive impact on the degradation of PAHs, with the best removal rate observed at a concentration of 50 μM. The findings also showed an increase in dehydrogenase and peroxidase activity, as well as enhancement of plant biomass and soil bacterial population, indicating a potentially beneficial role of melatonin in soil remediation.
The study aimed to assess the effects of melatonin, a plant growth regulator, on the degradation of phenanthrene (Phe) and pyrene (Py), in the rhizosphere of the Festuca grass. The experiments were divided into the following groups: 1) soil contaminated with Phe and Py, without the Festuca, 2) contaminated soil + Festuca, 3-5), contaminated soil + Festuca + the application of melatonin in three separate doses: 10, 50, or 100 mu M. After 90 days, the effects of melatonin supplementation on the degradation of polycyclic aromatic hydrocarbons (PAHs) were analyzed by evaluating the rate of PAHs degradation, the expression of genes encoding salicylaldehyde dehydrogenase (SDH) and glutathione peroxidase (GPX) enzymes in Pseudomonas putida, as well as by measuring the total activity of dehydrogenase and peroxidase enzymes. Our results have shown that in soil contaminated by 300 mg kg(-1) PAHs, application of melatonin (10, 50, 100 mu M), resulted in the following increase in the dehydrogenase and peroxidase activity in all three applied doses (19% and 5.7%), (45.3% and 34.3%), (40.9% and 14.3%), respectively in comparison to the control group. The experiment showed that soil supplementation with melatonin at 50 mu M, resulted in the highest removal rate of PAHs. According to our results, melatonin demonstrated a potentially favorable role in enhancing plant biomass, as well as an increase in soil bacterial population, and the activity of antioxidative enzymes in P. putida, causing all tested parameters of the soil and the expression of desired genes to be advantageously altered for the degradation of the chosen PAHs. (C) 2021 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据