4.6 Article

Tacrolimus Exposure Prediction Using Machine Learning

期刊

CLINICAL PHARMACOLOGY & THERAPEUTICS
卷 110, 期 2, 页码 361-369

出版社

WILEY
DOI: 10.1002/cpt.2123

关键词

-

向作者/读者索取更多资源

This study aimed to estimate the AUC of tacrolimus in organ transplant patients using Xgboost ML models, comparing b.i.d. and q.d. dosing regimens. The ML models showed excellent AUC estimation performance in test datasets and outperformed Bayesian estimation in six independent full-PK datasets, demonstrating their utility for routine TAC exposure estimation and dose adjustment.
The aim of this work is to estimate the area-under the blood concentration curve of tacrolimus (TAC) following b.i.d. or q.d. dosing in organ transplant patients, using Xgboost machine learning (ML) models. A total of 4,997 and 1,452 TAC interdose area under the curves (AUCs) from patients on b.i.d. and q.d. TAC, sent to our Immunosuppressant Bayesian Dose Adjustment expert system (www.pharmaco.chu-limoges.fr/) for AUC estimation and dose recommendation based on TAC concentrations measured at least at 3 sampling times (predose, similar to 1 and 3 hours after dosing) were used to develop 4 ML models based on 2 or 3 concentrations. For each model, data splitting was performed to obtain a training set (75%) and a test set (25%). The Xgboost models in the training set with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment were evaluated in the test set and in 6 independent full-pharmacokinetic (PK) datasets from renal, liver, and heart transplant patients. ML models based on two or three concentrations, differences between these concentrations, relative deviations from theoretical times of sampling, and four covariates (dose, type of transplantation, age, and time between transplantation and sampling) yielded excellent AUC estimation performance in the test datasets (relative bias < 5% and relative RMSE < 10%) and better performance than maximum a posteriori Bayesian estimation in the six independent full-PK datasets. The Xgboost ML models described allow accurate estimation of TAC interdose AUC and can be used for routine TAC exposure estimation and dose adjustment. They will soon be implemented in a dedicated web interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据