4.8 Review

Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence

期刊

CHEMICAL REVIEWS
卷 121, 期 3, 页码 1425-1462

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.0c00692

关键词

-

资金

  1. European Commission [797945]
  2. Ministerio de Economia y Competitividad de Espana [MAT2016-75362-C3-1-R]
  3. Ministerio de Innovacion y Ciencia [PID2019-106211RB-I00]
  4. Instituto de Salud Carlos III [PI16/00812]
  5. Comunidad Autonoma de Madrid [B2017/BMD-3867RENIMCM]
  6. European Structural and Investment Fund
  7. European Commission

向作者/读者索取更多资源

The spectrally narrow and long-lived luminescence of lanthanide ions makes optical nanomaterials based on these elements attractive. CB colloidal lanthanide-doped semiconductor nanocrystals show potential in light energy transfer, but current limitations in variety and efficiency hinder their widespread use.
The spectrally narrow, long-lived luminescence of lanthanide ions makes optical nanomaterials based on these elements uniquely attractive from both a fundamental and applicative standpoint. A highly coveted class of such nanomaterials is represented by CB colloidal lanthanide-doped semiconductor nanocrystals (LnSNCs). Therein, upon proper design, the poor light absorption intrinsically featured by lanthanides is compensated by the semiconductor moiety, which harvests the optical energy and funnel it to the luminescent metal center. Although a great deal of experimental effort has been invested to produce efficient nanomaterials of that sort, relatively modest results have been obtained thus far. As of late, halide perovskite nanocrystals have surged as materials of choice for doping lanthanides, but they have non-negligible shortcomings in terms of chemical stability, toxicity, and light absorption range. The limited gamut of currently available colloidal LnSNCs is unfortunate, given the tremendous technological impact that these nanomaterials could have in fields like biomedicine and optoelectronics. In this review, we provide an overview of the field of colloidal LnSNCs, while distilling the lessons learnt in terms of material design. The result is a compendium of key aspects to consider when devising and synthesizing this class of nanomaterials, with a keen eye on the foreseeable technological scenarios where they are poised to become front runners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom

Wojciech M. Piotrowski, Riccardo Marin, Maja Szymczak, Emma Martin Rodriguez, Dirk H. Ortgies, Paloma Rodriguez-Sevilla, Miroslav D. Dramicanin, Daniel Jaque, Lukasz Marciniak

Summary: Lifetime-based luminescence thermometry enables accurate deep-tissue monitoring of temperature changes, but short lifetimes and poor brightness limit its performance. A solution to these limitations is the design and optimization of luminescent nanothermometers co-doped with transition metal and lanthanide ions, which exhibit strong near-infrared emission and long temperature-dependent photoluminescence lifetime. These nanothermometers, combined with a custom-made instrument, allow for obtaining 2D thermal maps for deep-tissue thermal mapping. This study provides foundations for the deployment of lifetime-based thermometry for accurate deep-tissue temperature monitoring.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

3D Optical Coherence Thermometry Using Polymeric Nanogels

Tamara Munoz-Ortiz, Idoia Alayeto, Jose Lifante, Dirk H. Ortgies, Riccardo Marin, Emma Martin Rodriguez, Maria del Carmen Iglesias de la Cruz, Gines Lifante-Pedrola, Jorge Rubio-Retama, Daniel Jaque

Summary: Nanothermometry utilizes nanoparticles as thermal probes, enabling remote and minimally invasive sensing. It has emerged as a powerful tool in biomedicine. However, the lack of 3D thermal imaging capability and readily available tools in clinic hinders its translation to the bedside.

ADVANCED MATERIALS (2023)

Article Nanoscience & Nanotechnology

Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles

Khouloud Hamraoui, Vivian Andrea Torres-Vera, Irene Zabala Gutierrez, Alejandro Casillas-Rubio, Mohammed Alqudwa Fattouh, Antonio Benayas, Riccardo Marin, Marta Maria Natile, Miguel Manso Silvan, Juan Rubio-Zuazo, Daniel Jaque, Sonia Melle, Oscar G. Calderoin, Jorge Rubio-Retama

Summary: Rare-earth doped nanoparticles (RENPs) have attracted increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm), making them ideal optical probes for in vivo imaging. The optimization of thermal sensitivity in RENPs depends on the core chemical composition and size, active-shell, and outer-inert-shell thicknesses.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Neural Networks Push the Limits of Luminescence Lifetime Nanosensing

Liyan Ming, Irene Zabala-Gutierrez, Paloma Rodriguez-Sevilla, Jorge Rubio Retama, Daniel Jaque, Riccardo Marin, Erving Ximendes

Summary: This article introduces a luminescence lifetime estimation method based on U-NET to improve the estimation accuracy under extremely low signal-to-noise ratio conditions. The effectiveness of U-NET is demonstrated in luminescence lifetime thermometry and its sensing performance improvement is verified through two experiments under extreme measurement conditions.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications

Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luis D. Carlos

Summary: Luminescence (nano)thermometry is a remote sensing technique that utilizes the temperature dependency of luminescence features to measure temperature. It has potential applications in various fields and requires the establishment of a theoretical background, standardized practices, and improved readouts through multiparametric analysis and artificial intelligence algorithms. Challenges in luminescence thermometry and the need for continuous innovation are also discussed.

ADVANCED MATERIALS (2023)

Article Materials Science, Multidisciplinary

A brighter era for silver chalcogenide semiconductor nanocrystals

Liyan Ming, Irene Zabala-Gutierrez, Oscar G. Calderon, Sonia Melle, Erving Ximendes, Jorge Rubio-Retama, Riccardo Marin

Summary: Silver chalcogenide semiconductor nanocrystals (Ag2E SNCs) play an important role in the biomedical field due to their near-infrared excitation and low cytotoxicity. However, their low photoluminescence quantum yield poses a challenge for bioimaging and biosensing applications. This article provides an overview of strategies to improve the brightness of Ag2E SNCs by addressing defects, metallic silver, and composition issues. Future research directions to further enhance the brightness and effectiveness of Ag2E SNCs in biomedical applications are also discussed.

OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Lanthanide doped nanoparticles for reliable and precise luminescence nanothermometry in the third biological window

Ana C. C. Soares, Tasso O. Sales, Erving C. Ximendes, Daniel Jaque, Carlos Jacinto

Summary: In recent years, there has been significant interest in infrared emitting luminescent nanothermometers due to their potential for new diagnosis and therapy procedures. However, concerns have been raised regarding their reliability, as tissues can induce spectral distortions even in the commonly used second biological window. In this study, the effectiveness of shifting the operation range of these nanothermometers to the third biological window is demonstrated, showing minimal distortion by tissue and opening the path to reliable luminescence thermometry. Advanced analysis of emission spectra allows for sub-degree thermal uncertainties.

NANOSCALE ADVANCES (2023)

Article Materials Science, Multidisciplinary

Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging

W. M. Piotrowski, R. Marin, M. Szymczak, E. Martin Rodriguez, D. H. Ortgies, P. Rodriguez-Sevilla, P. Bolek, M. D. Dramicanin, D. Jaque, L. Marciniak

Summary: Near-infrared (NIR) luminescence thermometry is a reliable method for remote thermal sensing and imaging. Lanthanide (Ln(3+))-based nanophosphors are commonly used as NIR nanothermometers, but the combination of Ln(3+) with transition metal (TM) ions can enhance the sensitivity of the thermometric approach. However, there are few examples of luminescence nanothermometers combining both TM and Ln(3+), leaving room for further exploration of these systems.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Materials Science, Multidisciplinary

Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications

Wojciech M. Piotrowski, Maja Szymczak, Emma Martin Rodriguez, Riccardo Marin, Marta Henklewska, Blazej Pozniak, Miroslav Dramicanin, Lukasz Marciniak

Summary: The increasing popularity of luminescent nanothermometry in recent years is due to its potential application in biomedicine. This study introduces a biocompatible bimodal luminescent thermometer that operates in ratiometric and luminescence lifetime modes, offering high sensitivity and low cytotoxicity, making it suitable for bioapplications.

MATERIALS CHEMISTRY AND PHYSICS (2024)

Article Materials Science, Multidisciplinary

Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control

Walaa Mohammad, K. David Wegner, Clothilde Comby-Zerbino, Vanessa Trouillet, Marina Paris Ogayar, Jean-luc Coll, Riccardo Marin, Daniel Jaque Garcia, Ute Resch-Genger, Rodolphe Antoine, Xavier Le Guevel

Summary: In this study, ultra-small gold nanoparticles stabilized by co-ligands were synthesized, and their physicochemical properties were controlled by the amount of reducing agent used. The absorption cross-section was significantly increased by precisely controlling the reducing agent, which in turn influenced the photoluminescence quantum yield. The results suggest that the physicochemical properties of the ligand shell can be tuned to control the near-infrared absorption and photoluminescence of the gold nanoparticles.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Ion-induced bias in Ag2S luminescent nanothermometers

Marina Paris Ogayar, Diego Mendez-Gonzalez, Irene Zabala Gutierrez, Alvaro Artiga, Jorge Rubio-Retama, Oscar G. Calderon, Sonia Melle, Aida Serrano, Ana Espinosa, Daniel Jaque, Riccardo Marin

Summary: Luminescence nanothermometry is a technique that uses luminescence signals from nanosized materials to remotely and minimally invasively measure temperature. However, in a biomedical context, the reliability of temperature measurement is compromised by bias caused by environmental conditions. This study reveals an unexpected source of bias induced by metal ions, which enhances the emission of Ag2S nanothermometers. These findings highlight the need for caution when using luminescence nanothermometry in complex biological environments.

NANOSCALE (2023)

暂无数据