4.6 Article

Development of novel strontium containing bioactive glass based calcium phosphate cement

期刊

DENTAL MATERIALS
卷 32, 期 6, 页码 703-712

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2016.03.006

关键词

Calcium phosphate cement; Bioactive glass; Strontium; Bone graft

资金

  1. Italian Society of Osseointegrated Implantology (SIO)

向作者/读者索取更多资源

Objective. The aim of this study was to investigate the effect on properties of increasing strontium substitution for calcium in bioactive glasses used as precursors for novel calcium phosphate cements. Methods. Glasses were produced by progressively substituting strontium for calcium. Cements were prepared by mixing the glass powder with Ca(H2PO4)(2) powder with a 2.5% solution of Na2HPO4. Setting times and compressive strength were measured after 1 h, 1 day, 7 days and 28 days immersion in Tris buffer solution. X-ray diffraction (XRD), Fourier transform infrared spectroscopy and radiopacity were measured and crystal morphology was assessed using scanning electron microscopy. Results. A correlation between the phases formed, morphology of the crystallites, setting time and compressive strength were analyzed. Setting time increased proportionally with strontium substitution in the glass up to 25%, whereas for higher substitutions it decreased. Compressive strength showed a maximum value of 12.5 MPa and was strongly influenced by the interlocking of the crystals and their morphology. XRD showed that the presence of strontium influenced the crystal phases formed. Octacalcium phosphate (Ca8H2(PO4)(6)center dot 5H(2)o, OCP) was the main phase present after 1 h and 1 day whereas after 28 days OCP was completely transformed to strontium-containing hydroxyapatite (SrxCa(10-x)(PO4)(6)(OH)(2), SrHA). Radiopacity increased proportionally to strontium substitution in the glass. Significance. A novel method to develop a bone substitute forming in vitro SrHA as a final product by using a bioactive glass as a precursor was shown. These novel injectable bioactive glass cements are promising materials for dental and orthopedic applications. Further in vivo characterizations are being conducted. (C) 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据