4.5 Article

Metabolomic differences in blastocoel and uterine fluids collected in vivo by ultrasound biomicroscopy on rabbit embryos

期刊

BIOLOGY OF REPRODUCTION
卷 104, 期 4, 页码 794-805

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/biolre/ioab005

关键词

pre-implantation embryo; rabbit; blastocoel; uterine fluid; ultrasound biomicroscopy; metabolite

资金

  1. INRAE

向作者/读者索取更多资源

The study developed an innovative technique using ultrasound biomicroscopy, guided puncture, and nuclear magnetic resonance to characterize the in vivo uterine and blastocoelic microenvironment of the peri-implantation rabbit embryo.
The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development. Summary sentence: Development of an innovative technique coupling ultrasound biomicroscopy, guided puncture, and nuclear magnetic resonance to characterize the in vivo uterine and blastocoelic microenvironment of the peri-implantation rabbit embryo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据