4.7 Article

Impact of chloride surface treatment on nano-porous GaN structure for enhanced water-splitting efficiency

期刊

APPLIED SURFACE SCIENCE
卷 532, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.147465

关键词

Water splitting; PEC cells; GaN; Porous semiconductor; Electrochemical etching; Nano-architectures

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2020R1A2B5B03001603, NRF-2019K1A3A1A39103053]

向作者/读者索取更多资源

Photoelectrochemical devices equipped with semiconductor electrodes could be used for economically feasible hydrogen generation from water and sunlight energy. The bottleneck is in designing efficiently operating photoelectrodes, in particular with practical nano-architectures maximizing the extraction of the generated charge carriers for the water splitting reaction. In this work, using conventional electrochemical wet etching, we fabricated a nano-porous GaN structure and demonstrated its excellent functionality as a photoelectrode applicable for the water splitting. In particular, using a conventional analysis, we confirmed the water splitting efficiencies of 0.12% and 0.31%, comparing the planar and the nano-porous photoelectrode architectures, respectively. The major advantage of the porosity was in the increased fraction of the space charge region allowing for radically more efficient extraction of photo-generated charge carriers. The water splitting performance of the nano-porous electrodes was further improved by chloride treatment of the samples. This improvement was attributed to the surface chemical bonds reconstruction and/or electronic traps filling, resulting in additional similar to 20% water splitting efficiency improvement employing the nano-porous photoelectrode architecture. Altogether, we conclude that chloride treated nano-porous GaN photoelectrodes has a great potential for the use in the photoelectrochemical water splitting devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据