4.7 Article

Sorting transition-metal diborides: New descriptor for mechanical properties

期刊

ACTA MATERIALIA
卷 207, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116685

关键词

Valence electron concentration; Relative electronegativity; Diborides; Elastic constants; Hardness; Toughness

资金

  1. National Natural Science Foundation of China [51972139, 51602122, 51672101]
  2. National Key R&D Program of China [2016YFA0200400]
  3. China Postdoctoral Science Foundation [2020M681031]
  4. Program for JLU Science and Technology Innovative Research Team [2017TD-09]
  5. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

This study systematically explores the mechanical properties and brittle-ductile relationship of transition metal dual-borides through first-principles calculations, revealing their remarkable structural stability and hardness. The relative electronegativity of constituent atoms is identified as a distinct indicator to regulate scattered property trends. The composite VEC-REN descriptor offers crucial insights into the mechanisms driving well-regulated property trends in transition metal compounds.
An enduring quest in materials research is to reconcile two of the most prominent yet often conflicting mechanical properties, hardness and toughness. Strong covalent solids like diamond exhibit superior hardness but are brittle, while ductile metals possess excellent toughness but are soft. Transition-metal (TM) carbides, nitrides, and borides offer a viable solution, where metal atoms provide the valence electrons to raise toughness and light elements form a covalent bonding network to build hardness. Among such compounds, TM diborides are especially promising for their optimal TM-boron ratios and boron's versatile bonding ability. Compared to carbides and nitrides, however, borides are less understood regarding key property trends and underlying mechanisms. Here, we report on a systematic first-principles study of a large series of group-IVB, VB and VIB dual-TM diborides in hexagonal structure to explore the brittle-ductile relation. Adopting the valence electron concentration (VEC) indicator previously used for the rocksalt structure nitrides, carbides and carbonitrides, we extend this approach to the description of mechanical properties of chemically and structurally different TM diborides, uncovering their notably superior structural stability and hardness and key mechanism. Most significantly, we identify the relative electronegativity (REN) of the constituent atoms in dual-TM diborides as a distinct indicator to regulate the widely scattered property trends under the VEC description. The composite VEC-REN descriptor constitutes a robust approach for accurately sorting mechanical properties by accounting for large data scatterings among compounds of the same VEC, thereby offering crucial insights into the mechanisms driving rich and well-regulated property trends in TM compounds. The strong and general physics and chemistry considerations for constructing the VEC-REN descriptor makes it a powerful and versatile tool, opening a new path for rational design and optimization of hardness-toughness balance in wide-ranging materials. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据