4.8 Article

Tumor Microenvironment-Responsive Nanococktails for Synergistic Enhancement of Cancer Treatment via Cascade Reactions

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 4, 页码 4861-4873

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c20268

关键词

multi-bioresponsibility; nanoparticle; chemotherapy; chemodynamic therapy; photodynamic therapy; cascade reaction

资金

  1. National Natural Science Foundation of China [82072060, 31801126, 31830094]
  2. Fundamental Research Funds for the Central Universities [XDJK2019TY002]
  3. Venture & Innovation Support Program for Chongqing Overseas Returnees [cx2018029]
  4. Chengdu Science and Technology Program [2018-CY02-00042-GX]
  5. 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University [ZYJC18032, ZY2016101, ZY2016203]

向作者/读者索取更多资源

The combination treatment strategy of PC-Mn@Dox-NPs, incorporating Dox-induced chemotherapy, Mn2+-mediated chemodynamic therapy, and PC-based PDT via cascade reactions, exhibits multiple bioresponsibilities and favorable biosafety. The nanococktail achieved enhanced in vitro and in vivo anticancer efficacies compared to mono- or dual-therapeutic approaches, showing potential as a promising strategy for synergistic cancer treatment.
A combination treatment strategy that relies on the synergetic effects of different therapeutic approaches has been considered to be an effective method for cancer therapy. Herein, a chemotherapeutic drug (doxorubicin, Dox) and a manganese ion (Mn2+) were co-loaded into regenerated silk fibroin-based nanoparticles (NPs), followed by the surface conjugation of phycocyanin (PC) to construct tumor microenvironment-activated nanococktails. The resultant PC-Mn@Dox-NPs showed increased drug release rates by responding to various stimulating factors (acidic pH, hydrogen peroxide (H2O2), and glutathione), revealing that they could efficiently release the payloads (Dox and Mn2+) in tumor cells. The released Dox could not only inhibit the growth of tumor cells but also generated a large amount of H2O2. The elevated H2O2 was decomposed into the highly harmful hydroxyl radicals and oxygen through an Mn2+-mediated Fenton-like reaction. Furthermore, the generated oxygen participated in photodynamic therapy (PDT) and produced abundant singlet oxygen. Our investigations demonstrate that these PC-Mn@Dox-NPs exhibit multiple bioresponsibilities and favorable biosafety. By integrating Dox-induced chemotherapy, Mn2+-mediated chemodynamic therapy, and PC-based PDT via cascade reactions, PC-Mn@Dox-NPs achieved enhanced in vitro and in vivo anticancer efficacies compared to all the mono- or dual-therapeutic approaches. These findings reveal that PC-Mn Dox-NPs can be exploited as a promising nanococktail for cascade reaction-mediated synergistic cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据