4.6 Review

Opto-Thermoelectric Tweezers: Principles and Applications

期刊

FRONTIERS IN PHYSICS
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2020.580014

关键词

optothermal effect; thermoelectricity; opto-thermoelectric tweezers; optical manipulation; colloidal particles

资金

  1. National Aeronautics and Space Administration Early Career Faculty Award [80NSSC17K0520]
  2. National Science Foundation [NSF-CMMI-1761743]
  3. National Institute of General Medical Sciences of the National Institutes of Health [DP2GM128446]

向作者/读者索取更多资源

Opto-thermoelectric tweezers (OTET), which exploit the thermophoretic matter migration under a light-directed temperature field, present a new platform for manipulating colloidal particles with a wide range of materials, sizes, and shapes. Taking advantage of the entropically favorable photon-phonon conversion in light-absorbing materials and spatial separation of dissolved ions in electrolytes, OTET can manipulate the particles in a low-power and high-resolution fashion. In this mini-review, we summarize the concept, working principles, and applications of OTET. Recent developments of OTET in three-dimensional manipulation and parallel trapping of particles are discussed thoroughly. We further present their initial applications in particle filtration and biological studies. With their future development, OTET are expected to find a wide range of applications in life sciences, nanomedicine, colloidal sciences, photonics, and materials sciences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Optothermal rotation of micro-/nano-objects

Hongru Ding, Zhihan Chen, Carolina Ponce, Yuebing Zheng

Summary: Due to their contactless and fuel-free operation, optical rotation techniques have great potential in various fields such as cellular biology, 3D imaging, and micro/nanorobotics. However, the complexity of optics, high power requirements, and limitations in object applicability hinder their broader use. This Feature Article focuses on a new class of optical rotation techniques called optothermal rotation, which utilizes light-mediated thermal phenomena to enable versatile and simpler rotary control of objects with lower power. The article provides an overview of the fundamental thermal phenomena and concepts involved in optothermal rotation and categorizes the techniques based on their rotation modes and thermal phenomena. The potential applications of optothermal manipulation techniques in areas like single-cell mechanics, 3D bio-imaging, and micro/nanomotors are also discussed, along with insights on operating guidelines, challenges, and future directions.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Ultrafast Optical Nanoscopy of Carrier Dynamics in Silicon Nanowires

Jingang Li, Rundi Yang, Yoonsoo Rho, Penghong Ci, Matthew Eliceiri, Hee K. Park, Junqiao Wu, Costas P. Grigoropoulos

Summary: The distribution and dynamics of carriers in semiconductor materials play a crucial role in their physical properties and performance in industrial applications. As electronic and photonic devices continue to shrink in size, there is a need for tools to study carrier behavior at picosecond time and nanometer length scales. In this study, we present pump-probe optical nanoscopy to investigate carrier dynamics in silicon nanostructures. By combining experiments with the point-dipole model, we are able to determine the size-dependent lifetime of photoexcited carriers in individual silicon nanowires. Additionally, we demonstrate the mapping of local carrier decay time in silicon nanostructures with sub-50 nm spatial resolution. This study enables the nanoimaging of ultrafast carrier kinetics and has promising applications in the design of various electronic, photonic, and optoelectronic devices.

NANO LETTERS (2023)

Article Chemistry, Multidisciplinary

Optical Manipulation Heats up: Present and Future of Optothermal Manipulation

Pavana Siddhartha Kollipara, Zhihan Chen, Yuebing Zheng

Summary: Optothermal manipulation is a versatile technique that combines optical and thermal forces to control micro-/nanoparticles and biological entities. It overcomes the limitations of traditional optical tweezers and has a wide range of applications in biology, nanotechnology, and robotics. However, there are current challenges in experimental and modeling aspects, which need to be addressed for further advancements in this field.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Multimodal Optothermal Manipulations along Various Surfaces

Hongru Ding, Pavana Siddhartha Kollipara, Kan Yao, Yiran Chang, Daniel J. Dickinson, Yuebing Zheng

Summary: Optical tweezers offer contact-free manipulation of small objects, but require sophisticated imaging and feedback systems for controlled motion. We develop an optothermal platform that enables multimodal manipulation of micro/nanoparticles along various surfaces, including both synthesized particles and biological cells. With this platform, we can achieve localized control of biological functions on rough surfaces of live worms and their embryos. This multimodal optothermal platform will be a powerful tool in life sciences, nanotechnology, and colloidal sciences.

ACS NANO (2023)

Article Chemistry, Physical

Tunable Couplings of Photons with Bright and Dark Excitons in Monolayer Semiconductors on Plasmonic-Nanosphere-on-Mirror Cavities

Jie Fang, Suichu Huang, Kan Yao, Tianyi Zhang, Mauricio Terrones, Wentao Huang, Yunlu Pan, Yuebing Zheng

Summary: Tunable exciton-photon couplings have been demonstrated in monolayer TMDs, showing strong bright-exciton-photon couplings and revealing the novel interactions between bright and dark exciton-photon hybrids in a single optical cavity. The waveguide mode can be tuned in wavelengths by controlling the spacer thickness, and the relative contribution from the antenna mode coupled with dark excitons can be dynamically enlarged by increasing the excitation angle. This study opens new possibilities in tunable QED and provides insights into the coexistence of bright and dark exciton-photon couplings.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

High-Resolution Volumetric Imaging and Classification of Organisms with Standard Optical Microscopy

Yaoran Liu, Rohit Unni, Xin Lou, Mingcheng Yang, Yuebing Zheng

Summary: This article introduces a high-resolution 3D imaging and classification technique based on optical microscopy coupled with optothermal rotation. It is applicable to any suspended organism in clinical samples, enabling contact-free and biocompatible 3D imaging.

NANO LETTERS (2023)

Article Nanoscience & Nanotechnology

Large-Area Ultrathin Moire Chiral Metamaterials by Thermal-Tape-Transfer Printing

Anand Swain, Zhihan Chen, Yaoran Liu, Zilong Wu, Yuebing Zheng

Summary: Thermal-tape-transfer printing enables the fabrication of large-scale and homogeneous moire chiral metamaterials (MCMs) with arbitrary twist angles and tunable optical chirality. This opens doors to various biological, photonic, and optoelectronic applications.

ACS PHOTONICS (2023)

Review Chemistry, Multidisciplinary

Detection and analysis of chiral molecules as disease biomarkers

Yaoran Liu, Zilong Wu, Daniel W. Armstrong, Herman Wolosker, Yuebing Zheng

Summary: The chirality of small metabolic molecules plays an important role in physiological processes and health assessment. Abnormal ratios of enantiomers in biofluids and tissues are associated with various diseases. Chiral small molecules show great potential as biomarkers for disease diagnosis, prognosis, drug-effect monitoring, pharmacodynamics, and personalized medicine. However, analyzing small chiral molecules in clinical settings remains challenging due to their diversity and low concentration levels.

NATURE REVIEWS CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Synchronous and Fully Steerable Active Particle Systems for Enhanced Mimicking of Collective Motion in Nature

Zhihan Chen, Hongru Ding, Pavana Siddhartha Kollipara, Jingang Li, Yuebing Zheng

Summary: Researchers propose a novel optical feedback control system that can mimic collective motion observed in living objects. This system allows for experimental investigation of velocity alignment in a perturbed environment, and spontaneous formation of different moving states and dynamic transitions were observed.

ADVANCED MATERIALS (2023)

Article Multidisciplinary Sciences

Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum

Tiancheng Zhang, Kaichen Dong, Jiachen Li, Fanhao Meng, Jingang Li, Sai Munagavalasa, Costas P. Grigoropoulos, Junqiao Wu, Jie Yao

Summary: In this work, a non-trivial twist-enabled coupling mechanism was identified and formulated in twisted bilayer photonic crystals, resulting in the generation of optical vortices. This study expands the field of moire photonics and opens up new possibilities for its applications.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Hypothermal opto-thermophoretic tweezers

Pavana Siddhartha Kollipara, Xiuying Li, Jingang Li, Zhihan Chen, Hongru Ding, Youngsun Kim, Suichu Huang, Zhenpeng Qin, Yuebing Zheng

Summary: This article introduces the low-temperature opto-thermophoretic tweezers (HOTTs) technology, which achieves low-power trapping of diverse colloids and biological cells at sub-ambient temperatures through an environmental cooling strategy. At the same time, HOTTs can also suppress thermal damage. With their noninvasiveness and versatile capabilities, HOTTs have great potential for research and applications in materials science and biotechnology.

NATURE COMMUNICATIONS (2023)

Editorial Material Optics

Advancing optothermal manipulation: decoupling temperature and flow fields in quasi-isothermal microscale streaming

Youngsun Kim, Yuebing Zheng

Summary: By decoupling temperature and flow fields, ISO-FLUCS enables precise control over fluid manipulation while minimizing thermal damage through symmetry-correlated laser scan sequences. Quasi-isothermal optofluidic streaming is achieved.

LIGHT-SCIENCE & APPLICATIONS (2023)

Article Nanoscience & Nanotechnology

Bubble Printing of Layered Silicates: Surface Chemistry Effects and Picomolar Forster Resonance Energy Transfer Sensing

Marcel Herber, Ana Jimenez Amaya, Nicklas Giese, Bharath Bangalore Rajeeva, Yuebing Zheng, Eric H. Hill

Summary: The printing of layered silicate nanoclays using a laser-directed microbubble was established, and the influence of surface chemistry on the resulting assembly was studied. This work also demonstrated the potential of this method in fabricating ultrasensitive molecular sensors.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Low-loss, geometry-invariant optical waveguides with near-zero-index materials

Danqing Wang, Kaichen Dong, Jingang Li, Costas Grigoropoulos, Jie Yao, Jin Hong, Junqiao Wu

Summary: Optical materials with nearly zero refractive indices can be used as cladding layers for low-loss optical waveguides to optimize their performance and achieve smaller sizes and lower crosstalk. In addition, hollow waveguides with near-zero-index cladding layers support low-loss light propagation.

NANOPHOTONICS (2022)

Review Chemistry, Multidisciplinary

Bubble-pen lithography: Fundamentals and applications

Pavana Siddhartha Kollipara, Ritvik Mahendra, Jingang Li, Yuebing Zheng

Summary: Laser-based bubble-pen lithography (BPL) is an emerging fabrication method that enables high-resolution miniaturization and on-demand patterning of functional components. It utilizes laser-controlled microbubbles to attract and immobilize particles, ions, and molecules. BPL has experienced tremendous progress in theory, engineering, and application, and has diverse applications in fields such as quantum dot displays, biological and chemical sensing, and clinical diagnosis.

AGGREGATE (2022)

暂无数据