4.7 Article

Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking

期刊

JOURNAL OF BUILDING ENGINEERING
卷 31, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jobe.2020.101422

关键词

Concrete beams; Near surface mounted; NSM-CFRP; Strengthening

资金

  1. Higher Committee for Education Development in Iraq (HCED)

向作者/读者索取更多资源

Flexural strengthening of reinforced concrete (RC) beams using near-surface-mounted (NSM) technique has become an attractive alternative for rehabilitation using fiber reinforced polymer (FRP) materials. Previous studies have recommended using available anchoring techniques to overcome premature bonding failure. In this study, mechanical interlocking grooves were utilized to delay or prevent debonding failure. The first part of the study aimed to investigate the bond characteristics for NSM-CFRP bars by conducting several pullout tests on No. 6, No.10, and No.13 CFRP bars. Results indicate that mechanical interlocking grooves can significantly enhance the bonding capacity and prevent or delay premature bonding failure. In the second part, the proposed NSM CFRP strengthening technique was used to strengthen nine RC beams. In addition to longitudinal grooves, the proposed technique consisted of 6 mm wide lateral grooves (or mechanical interlocking) placed at 76 mm on center along the entire length of the strengthened beams. Steel reinforcement ratios of 0.7% and 0.4% were selected. All beam specimens were tested under four-point bending until failure. Results showed that strengthening was more effective for specimens with a lower steel reinforcement ratio. Percentages of enhancement in flexural strength were between 34-68% and 60-128% for specimens with 0.7% and 0.4% steel reinforcement ratios, respectively. Finally, a simple empirical model was created for the experimental results. Theoretical results showed reasonable agreement with the experimental results. However, the maximum load carrying capacity and flexural stiffness were overestimated for beams with a total reinforcement ratio (steel plus CFRP) larger than 1.1%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据