4.6 Review

A Review of Integrative Imputation for Multi-Omics Datasets

期刊

FRONTIERS IN GENETICS
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2020.570255

关键词

multi-omics imputation; integrative imputation; single-omics imputation; deep learning; autoencoders; machine learning; transfer learning; multi-view matrix factorization

资金

  1. United States National Institutes of Health [P20GM109036, R01AR069055, U19AG055373, R01AG061917, AR-27065, M01 RR00585]
  2. United States Engineer Research and Development Center [W912HZ20P0023]

向作者/读者索取更多资源

Multi-omics studies, which explore the interactions between multiple types of biological factors, have significant advantages over single-omics analysis for their ability to provide a more holistic view of biological processes, uncover the causal and functional mechanisms for complex diseases, and facilitate new discoveries in precision medicine. However, omics datasets often contain missing values, and in multi-omics study designs it is common for individuals to be represented for some omics layers but not all. Since most statistical analyses cannot be applied directly to the incomplete datasets, imputation is typically performed to infer the missing values. Integrative imputation techniques which make use of the correlations and shared information among multi-omics datasets are expected to outperform approaches that rely on single-omics information alone, resulting in more accurate results for the subsequent downstream analyses. In this review, we provide an overview of the currently available imputation methods for handling missing values in bioinformatics data with an emphasis on multi-omics imputation. In addition, we also provide a perspective on how deep learning methods might be developed for the integrative imputation of multi-omics datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据