4.2 Article

CL-IoT: cross-layer Internet of Things protocol for intelligent manufacturing of smart farming

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12652-020-02502-0

关键词

Cross-layer; Clustering; Intelligent manufacturing; Nature-inspired algorithm; Smart farming; Internet of Things

向作者/读者索取更多资源

The text discusses the use of IoT in smart farming, the deployment of sensors and actuators on farms, and the design of clustering and routing algorithms in the proposed solution.
Internet of Things (IoT) for Intelligent Manufacturing of Smart Farming gained significant attention from researchers to automate various farming applications called Smart Farming (SF). The sensors and actuators deployed across the farm using which farmers receive periodic farm information related to temperature, soil moisture, light intensity, and water used, etc. The clustering-based methods are proven energy-efficient solutions for Wireless Sensor Networks (WSNs). However, by considering long-distance communications and scalable networks of IoT enabled SF; the present clustering solutions cannot be feasible and having higher delay and latency for various SF applications. To focus on requirements SF applications, an efficient and scalable protocol for remote monitoring and decision making of farms in rural regions called CL-IoT protocol proposed. A cross-layer-based clustering and routing algorithms have designed to reduce network communication delay, latency, and energy consumption. The cross-layer-based optimal Cluster Head (CH) selection solution proposed to overcome the energy asymmetry problem in WSN. The parameters of different layers like a physical, medium access control (MAC), and network layer of each sensor used to evaluate and select optimal CH and efficient data transmission. The nature-inspired algorithm proposed with a novel probabilistic decision rule functions as a fitness function to discover the optimal route for data transmission. The performance of the CL-IoT protocol analyzed using NS2 by considering the energy-efficiency, computational-efficiency, and QoS-efficiency factors. Compared to state-of-art IoT-based farming methods, the CL-IoT reduces energy consumption, communication overhead, and end-to-end delay up to a certain extent and maximizes the network throughput.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据