4.6 Article

A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals

期刊

APPLIED SCIENCES-BASEL
卷 10, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/app10217410

关键词

machine learning; hybrid classifier; sleep disorder; dental disorder; EEG; ECG; EMG

资金

  1. Robotics and Internet-of-Things Laboratory of Prince Sultan University, Saudi Arabia
  2. National Natural Science Foundation of China [61771100]

向作者/读者索取更多资源

Featured Application 1. The hybrid machine learning (HML) classifier can easily classify the subjects (healthy and bruxism), sleep stages (w and REM), and both with high accuracy. 2. The proposed system automatically detects the bruxism sleep disorder and sleep stages. 3. Single C4-A1 channel of the EEG signal found to be more accurate than ECG and EMG channels. Bruxism is a sleep disorder in which the patient clinches and gnashes their teeth. Bruxism detection using traditional methods is time-consuming, cumbersome, and expensive. Therefore, an automatic tool to detect this disorder will alleviate the doctor workload and give valuable help to patients. In this paper, we targeted this goal and designed an automatic method to detect bruxism from the physiological signals using a novel hybrid classifier. We began with data collection. Then, we performed the analysis of the physiological signals and the estimation of the power spectral density. After that, we designed the novel hybrid classifier to enable the detection of bruxism based on these data. The classification of the subjects into healthy or bruxism from the electroencephalogram channel (C4-A1) obtained a maximum specificity of 92% and an accuracy of 94%. Besides, the classification of the sleep stages such as the wake (w) stage and rapid eye movement (REM) stage from the electrocardiogram channel (ECG1-ECG2) obtained a maximum specificity of 86% and an accuracy of 95%. The combined bruxism classification and the sleep stages classification from the electroencephalogram channel (C4-P4) obtained a maximum specificity of 90% and an accuracy of 97%. The results show that more accurate bruxism detection is achieved by exploiting the electroencephalogram signal (C4-P4). The present work can be applied for home monitoring systems for bruxism detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据