4.5 Article

An Interlocking Fibrillar Polymer Layer for Mechanical Stability of Perovskite Solar Cells

期刊

ADVANCED MATERIALS INTERFACES
卷 7, 期 23, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202001425

关键词

defect passivation; dopant free hole transport layers; mechanical stability; perovskite solar cells; polymer fibrils

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2019R1A2C3008035, 2020M3D1A2102756, 2020M3D1A2102869, 2020M3H4A1A01086888]
  2. National Research Foundation of Korea [2020M3D1A2102756, 2020M3D1A2102869, 2020M3H4A1A01086888] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Atmospheric and mechanical stability of perovskite solar cells (PSCs) must be guaranteed for successful commercialization. A fibrillar polymer, poly[N-9 '-heptadecanyl-2,7-carbazole-alt-5,5-(4 ',7 '-di-2-thienyl-2 ',1 ',3 '-benzothiadiazole)] (PCDTBT), is reported as an efficient hole transfer layer (HTL) which significantly improves air and mechanical stability of perovskite solar cells (PSCs). PCDTBT fibrils formed at the grain boundaries of perovskite layer induce the highest fracture energies in the PSCs, which provide extrinsic reinforcement and shielding for enhanced mechanical and chemical stability. Debonding energy increases by 30% for the PSCs with PCDTBT fibrils, which fractures at 2.66 J m(-2), compared to the devices without PCDTBT fibrils at 2.09 J m(-2); more importantly, the threshold debonding driving force of the PCDTBT fibril-based devices is greatly improved by twofold under ambient conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据