4.6 Article

A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in Yarlung Zangbo River Basin

期刊

WATER
卷 12, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/w12092338

关键词

global warming; water cycle changes; low flow regimes; groundwater storage dynamic; cold mountainous catchments; Yarlung Zangbo River Basin

资金

  1. National Natural Science Foundation of China [41890822, 51861125102, 51879193]
  2. National Key Research and Development Program of China [2018YFC0407202, 2017YFC1502503]
  3. Overseas Expertise Introduction Project for Discipline Innovation (111 Project) - Ministry of Education and State Administration of Foreign Experts A ffairs P.R. China [B18037]

向作者/读者索取更多资源

Global warming has a profound influence on global and regional water cycles, especially in the cold mountainous area. However, detecting and quantifying such changes are still difficult because noise and variability in observed streamflow are relatively larger than the long-term trends. In this study, the impacts of global warming on the catchment water cycles in the Yarlung Zangbo River Basin (YZRB), one of most important catchments in south of the Tibetan Plateau, are quantified using a climatic approach based on the relationship between basin-scale groundwater storage and low flow at the annual time scale. By using a quantile regression method and flow recession analysis, changes in low flow regimes and basin-scale groundwater storage at the Nuxia hydrological station are quantified at the annual time scale during 1961-2000. Results show annual low flows (10th and 25th annual flows) of the YZRB have decreased significantly, while long-term annual precipitation, total streamflow, and high flows are statistically unchanged. Annual lowest seven-day flow shows a significantly downward trend (2.2 m(3)/s/a, p < 0.05) and its timing has advanced about 12 days (2.8 day/10a, p < 0.1) during the study period. Estimated annual basin-scale groundwater storage also shows a significant decreasing trend at a rate of 0.079 mm/a (p < 0.05) over the study period. Further analysis suggests that evaporation increase, decreased snow-fraction, and increased annual precipitation intensity induced by the rising temperature possibly are the drivers causing a significant decline in catchment low flow regimes and groundwater storage in the study area. This highlights that an increase in temperature has likely already caused significant changes in regional flow regimes in the high and cold mountainous regions, which has alarming consequences in regional ecological protection and sustainable water resources management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据