4.6 Article

The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi

期刊

PLOS GENETICS
卷 16, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008996

关键词

-

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2014/00789-6, 2017/23624-0]
  2. Technical University of Munich-Institute for Advanced Study (TUMIAS)
  3. German Research Council (DFG) [BR1502/19-1]
  4. FAPESP [2016/07870-9]

向作者/读者索取更多资源

Author summary Filamentous fungi secrete an array of biotechnologically valuable enzymes, with enzyme production being inhibited in the presence of preferred carbon sources, such as glucose, in a process known as carbon catabolite repression (CCR). This work unravels upstream signalling events that regulate CCR inAspergillus nidulans. Different mitogen-activated protein kinases (MAPKs) were identified and shown to be crucial for CCR and protein kinase A (PKA) activity, which is essential for carbon source utilisation in filamentous fungi. Furthermore, the MAPKs formed a protein complex with additional protein kinases, such as glycogen synthase kinase (GSK), which is important for glucose metabolism; resulting in the inhibition of CCR in the presence of non-preferred carbon sources. GSK was shown to potentially phosphorylate the MAPK PbsA of the high osmolarity glycerol (HOG) pathway. This study thus unravels the cross-talk between protein kinases from different signalling pathways that regulate carbon source utilisation in filamentous fungi. The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungusAspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据