4.2 Article

Dynamic tracking of microvascular hemoglobin content for continuous perfusion monitoring in the intensive care unit: pilot feasibility study

期刊

JOURNAL OF CLINICAL MONITORING AND COMPUTING
卷 35, 期 6, 页码 1453-1465

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10877-020-00611-x

关键词

Microcirculation; Near-infrared spectroscopy; Hemodynamic monitor; Critical care; Wavelet analysis

资金

  1. Canadian Institutes of Health Research [RN248497]
  2. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

The study aimed to determine the feasibility of MHC monitoring in critically ill patients using high-resolution near-infrared spectroscopy to assess peripheral microcirculation perfusion. Results showed inter-subject heterogeneity in MHC signal within the cohort, with correlations to systemic hemoglobin levels and oxygen saturation. Further evaluation of this novel hemodynamic metric is suggested for diagnosing microvascular dysfunction and monitoring peripheral perfusion.
Purpose: There is a need for bedside methods to monitor oxygen delivery in the microcirculation. Near-infrared spectroscopy commonly measures tissue oxygen saturation, but does not reflect the time-dependent variability of microvascular hemoglobin content (MHC) that attempts to match oxygen supply with demand. The objective of this study is to determine the feasibility of MHC monitoring in critically ill patients using high-resolution near-infrared spectroscopy to assess perfusion in the peripheral microcirculation. Methods: Prospective observational cohort of 36 patients admitted within 48 h at a tertiary intensive care unit. Perfusion was measured on the quadriceps, biceps, and/or deltoid, using the temporal change in optical density at the isosbestic wavelength of hemoglobin (798 nm). Continuous wavelet transform was applied to the hemoglobin signal to delineate frequency ranges corresponding to physiological oscillations in the cardiovascular system. Results: 31/36 patients had adequate signal quality for analysis, most commonly affected by motion artifacts. MHC signal demonstrates inter-subject heterogeneity in the cohort, indicated by different patterns of variability and frequency composition. Signal characteristics were concordant between muscle groups in the same patient, and correlated with systemic hemoglobin levels and oxygen saturation. Signal power was lower for patients receiving vasopressors, but not correlated with mean arterial pressure. Mechanical ventilation directly impacts MHC in peripheral tissue. Conclusion: MHC can be measured continuously in the ICU with high-resolution near-infrared spectroscopy, and reflects the dynamic variability of hemoglobin distribution in the microcirculation. Results suggest this novel hemodynamic metric should be further evaluated for diagnosing microvascular dysfunction and monitoring peripheral perfusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据