4.8 Article

Role of higher-order exchange interactions for skyrmion stability

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-18473-x

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

Transition-metal interfaces and multilayers are a promising class of systems to realize nanometer-sized, stable magnetic skyrmions for future spintronic devices. For room temperature applications, it is crucial to understand the interactions which control the stability of isolated skyrmions. Typically, skyrmion properties are explained by the interplay of pair-wise exchange interactions, the Dzyaloshinskii-Moriya interaction and the magnetocrystalline anisotropy energy. Here, we demonstrate that higher-order exchange interactions - which have so far been neglected - can play a key role for the stability of skyrmions. We use an atomistic spin model parametrized from first-principles and compare three different ultrathin film systems. We consider all fourth-order exchange interactions and show that, in particular, the four-site four spin interaction has a large effect on the energy barrier preventing skyrmion and antiskyrmion collapse into the ferromagnetic state. Our work opens perspectives to stabilize topological spin structures even in the absence of Dzyaloshinskii-Moriya interaction. Skyrmions are spin textures with topological charge that have considerable technological potential due to their stability. In this theoretical work, the authors demonstrate the importance of previous unconsidered higher-order exchange terms to the stability of skymions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据