4.8 Article

Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-18165-6

关键词

-

资金

  1. NIH [R35 HL140034, HL63030, HL61912]
  2. American Heart Association Collaborative Sciences Award [17CSA33610107]
  3. MOST (Taiwan) [MOST-107-2636-B-002-001]
  4. Fondation Leducq for the Alliance for CaMKII Signaling
  5. Netherlands Organization for Scientific Research (NWO) [184.032.201]

向作者/读者索取更多资源

Despite the clear association between myocardial injury, heart failure and depressed myocardial energetics, little is known about upstream signals responsible for remodeling myocardial metabolism after pathological stress. Here, we report increased mitochondrial calmodulin kinase II (CaMKII) activation and left ventricular dilation in mice one week after myocardial infarction (MI) surgery. By contrast, mice with genetic mitochondrial CaMKII inhibition are protected from left ventricular dilation and dysfunction after MI. Mice with myocardial and mitochondrial CaMKII overexpression (mtCaMKII) have severe dilated cardiomyopathy and decreased ATP that causes elevated cytoplasmic resting (diastolic) Ca2+ concentration and reduced mechanical performance. We map a metabolic pathway that rescues disease phenotypes in mtCaMKII mice, providing insights into physiological and pathological metabolic consequences of CaMKII signaling in mitochondria. Our findings suggest myocardial dilation, a disease phenotype lacking specific therapies, can be prevented by targeted replacement of mitochondrial creatine kinase or mitochondrial-targeted CaMKII inhibition. Little is known about how cardiac metabolism remodels following cardiac injury. Here, the authors show that mitochondrial CaMKII plays an important role in remodeling cardiac metabolism after injury and that replacement of mitochondrial creatine kinase improves energetics and protects against adverse remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据