4.8 Review

Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge e challenges and optimization

期刊

WATER RESEARCH
卷 183, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116059

关键词

Capacitive deionization; Industrial brine; Zero liquid discharge; Total dissolved solids; Scaling; Fouling

向作者/读者索取更多资源

Thermal-based Zero Liquid Discharge (ZLD) process has been used for managing industrial brine. However, conventional thermal ZLD process is very energy intensive. In view of this, pre-concentration techniques have been applied prior to thermal process to reduce energy consumption of ZLD systems. Capacitive Deionization (CDI) is an emerging desalination technique and has yet to be extensively explored for the treatment of industrial brine especially for ZLD applications. High concentration of total dissolved solids (TDS) and high fouling potential of industrial brine are two major challenges in CDI process. This paper reviews the possible factors for optimizing CDI process in industrial brine treatment, namely, cell architectures, strategies in operation and fouling control. Cell architectures of membrane CDI (MCDI) and flow-electrode CDI (CDI) are preferred options for treating industrial brine compared with classic CDI in terms of energy consumption and fouling propensity. There are other operational strategies that could enhance the feasibility of using CDI process for ZLD application. These include reversed voltage desorption, multi-stage operation, brine recirculation and fouling control. Fouling control methods comprise pretreatment, antifouling modification, antiscalant and chemical cleaning. These methods could be integrated to optimize fouling mitigation. In addition to providing insights on feasibility of using CDI to concentrate industrial brines, this review also proposed guidelines for optimizing CDI process applied to treat industrial brines for ZLD applications. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据