4.8 Article

Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination

期刊

WATER RESEARCH
卷 183, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116047

关键词

Algal organic matter; DBP Formation; NDMA; DCAN

资金

  1. Australian Research Council [LP110100548]
  2. Australian Postgraduate Award (APA) scholarship
  3. Australian Research Council [LP110100548] Funding Source: Australian Research Council

向作者/读者索取更多资源

Algal cells and algal organic matter (AOM) are a source of high dissolved organic carbon (DOC) and nitrogen (DON) concentrations. This poses a possible health risk due to their potential to form disinfection by-products (DBPs), some of which may be of health concern, after disinfection. While several studies have focussed on the formation of carbonaceous DBPs from AOM, only a few studies have focussed on the formation of nitrogen containing N-DBPs from AOM. Hence, the main aim of this study was to thoroughly investigate the N-DBP formation potential of the AOM from a species of cyanobacteria commonly found in natural waters, Microcystis aeruginosa. Three haloacetonitriles, two halonitromethanes, two haloacetamides, and eight N-nitrosamines were analysed by gas chromatography-mass spectrometry after chlorination and chloramination of the extracted AOM. To provide further insight into the influence of changing DON character on N-DBP formation potential, the AOM from three other species, Chlorella vulgaris, Dolichospermum circinale and Cylindrospermopsis raciborskii, were also tested. Dichloroacetonitrile (DCAN) was the DBP formed in the highest concentrations for both chlorination and chloramination of bulk AOM from all the species. Furthermore, during chlorination and chloramination, the high molecular weight fraction (>1 kDa) of AOM from M. aeruginosa had a greater DCAN formation potential (normalised to DOC or DON) than the AOM in the low molecular weight fraction (<1 kDa) of M. aeruginosa, regardless of growth stage. N-Nitrosamine formation from the bulk AOM of all species occurred only after chloramination. The molar concentration of N-nitrosodimethylamine (NDMA) was lower than the other N-nitrosamines detected. However, NDMA formation increased with culture age for all four species, in contrast to most other N-nitrosamines whose formation remained consistent or decreased with culture age. Overall, algal growth could result in elevated concentrations of N-DBPs due to the increasing concentrations of high molecular weight algal DON in the AOM. It is suggested that the AOM comprises precursors containing long C-chain amine (R-1-NH-R-2) or cyclic N-containing amine structures. Comparisons to previously measured N-DBP concentrations in drinking water suggest that the AOM from the algae and cyanobacteria examined in this study are not likely to be a major source of precursors for either DCAN or NDMA in real waters. However, AOM may present a major precursor source for other N-nitrosamines. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据