4.8 Article

Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater

期刊

WATER RESEARCH
卷 182, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116041

关键词

Nanoplastics; Anaerobic granular sludge; Polystyrene; Extracellular polymeric substances (EPS); Toxicity

资金

  1. Australian Research Council (ARC) [FT160100195]
  2. FEIT Blue Sky Research Scheme 2019
  3. UTS Early Career Research Development Grants

向作者/读者索取更多资源

Wastewater has been identified as an important carrier for nanoplastics, which could elicit unintended impacts on critical microbial processes. However, the long-term impacts of nanoplastics on anaerobic granular sludge (AGS) for methane recovery from wastewater and the mechanisms involved remains unclear. In this study, we investigated the long term exposure-response relationship between polystyrene nanoplastics (Nano-PS) and AGS. In continuous test over 120 days with 86 days' Nano-PS exposure, feeding wastewater with 10 mu g/L of Nano-PS had no significant impacts on the AGS performance. In comparison, higher levels (i.e., 20 and 50 mu g/L) of Nano-PS decreased methane production and chemical oxygen demand (COD) removal by 19.0-28.6% and 19.3-30.0%, respectively, along with volatile fatty acids (VFA) accumulation. More extracellular polymeric substance (EPS) was induced by 10 mu g/L of Nano-PS as a response to protect microbes, but higher levels (i.e., 20 and 50 mu g/L) of Nano-PS decreased EPS generation, causing a decline in granule size and cell viability. Fluorescence tagging found that a large number of Nano-PS agglomerated/accumulated on the outer layer of AGS and even transferred into deeper layers of AGS over exposure time, producing toxic effects to adherent microorganisms, e.g., Longilinea sp., Paludibacter sp. and Methanosaeta sp.. The oxidative stress induced by Nano-PS was revealed to be a key factor for reshaping the AGS, reflected by the increased reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release. The sodium dodecyl sulfate (SDS) leached from Nano-PS was also demonstrated to restrain the activities of antioxidant enzymes, thereby further lessening resistance to oxidative stress induced by Nano-PS. This work improves our ability to predict the risks associated with this ubiquitous contaminant in the environment. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据