4.8 Article

Iron and manganese fluxes across the sediment-water interface in a drinking water reservoir

期刊

WATER RESEARCH
卷 182, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116003

关键词

Anoxia; Hypolimnion; Metals; Oxidation-reduction; Redox; Water-quality; Hot moments

资金

  1. Virginia Tech Institute for Critical Technology and Applied Science
  2. Virginia Tech Department of Geosciences
  3. Consortium of University for the Advancement of Hydrologic Science, Inc
  4. Virginia Tech Graduate Student Assembly
  5. Virginia Water Resources Research Center
  6. Geological Society of America
  7. National Science Foundation [CNS-1737424, DEB-1753639, REU-1659495]

向作者/读者索取更多资源

The development of low dissolved oxygen (DO) concentrations in the hypolimnion of drinking water reservoirs during thermal stratification can lead to the reduction of oxidized, insoluble iron (Fe) and manganese (Mn) in sediments to soluble forms, which are then released into the water column. As metals degrade drinking water quality, robust measurements of metal fluxes under changing oxygen conditions are critical for optimizing water treatment. In this study, we conducted benthic flux chamber experiments in summer 2018 to directly quantify Fe and Mn fluxes at the sediment-water interface under different DO and redox conditions of a eutrophic drinking water reservoir with an oxygenation system (Falling Creek Reservoir, Vinton, VA, USA). Throughout the experiments, we monitored DO, oxidation-reduction potential (ORP), water temperature, and pH in the chambers and compared the metal fluxes in the chambers with time-series of fluxes calculated using a hypolimnetic mass balance method. Our results showed that metal fluxes were highly variable during the monitoring period and were sensitive to redox conditions in the water column at the sediment-water interface. The time-series changes in fluxes and relationship to redox conditions are suggestive of hot moments, short time periods of intense biogeochemical cycling. Although the metal concentrations and fluxes are specific to this site, the approaches for examining relationships between metals, oxygen concentrations and overall redox conditions can be applied by water utilities to improve water quality management of Fe and Mn. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据