4.5 Article

Bayesian inference using Hamiltonian Monte-Carlo algorithm for nonlinear joint modeling in the context of cancer immunotherapy

期刊

STATISTICS IN MEDICINE
卷 39, 期 30, 页码 4853-4868

出版社

WILEY
DOI: 10.1002/sim.8756

关键词

Bayesian inference; cancer; HMC algorithm; joint models; nonlinear mixed effect models

资金

  1. Association Nationale de la Recherche et de la Technologie
  2. Genentech Clinical Pharmacology
  3. Groupe de Recherche Statistiques et Sante
  4. Institut Roche

向作者/读者索取更多资源

Treatment evaluation in advanced cancer mainly relies on overall survival and tumor size dynamics. Both markers and their association can be simultaneously analyzed by using joint models, and these approaches are supported by many softwares or packages. However, these approaches are essentially limited to linear models for the longitudinal part, which limit their biological interpretation. More biological models of tumor dynamics can be obtained by using nonlinear models, but they are limited by the fact that parameter identifiability require rich dataset. In that context Bayesian approaches are particularly suited to incorporate the biological knowledge and increase the information available, but they are limited by the high computing cost of Monte-Carlo by Markov Chains algorithms. Here, we aimed to assess the performances of the Hamiltonian Monte-Carlo (HMC) algorithm implemented in Stan for inference in a nonlinear joint model. The method was validated on simulated data where HMC provided proper posterior distributions and credibility intervals in a reasonable computational time. Then the association between tumor size dynamics and survival was assessed in patients with advanced or metastatic bladder cancer treated with atezolizumab, an immunotherapy agent. HMC confirmed limited sensitivity to prior distributions. A cross-validation approach was developed and identified the current slope of tumor size dynamics as the most relevant driver of survival. In summary, HMC is an efficient approach to perform nonlinear joint models in a Bayesian framework, and opens the way for the use of nonlinear models to characterize both the rapid dynamics and the intersubject variability observed during cancer immunotherapy treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据