4.7 Article

Combination of energy limitation and sorption capacity explains 14C depth gradients

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 148, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2020.107912

关键词

Vertical SOC model; C-14; Mineral-associated organic carbon; Microbial model; Sorption capacity; Organo-mineral interactions

资金

  1. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

During the last decade, a paradigmatic shift regarding which processes determine the persistence of soil organic matter (SOM) took place. The interaction between microbial decomposition and association of organic matter with the soil mineral matrix has been identified as a focal point for understanding the formation of stable SOM. Using an improved version of the vertically resolved SOM model COMISSION (Ahrens et al., 2015), this paper investigates the effect of a maximum sorption capacity (Q(max)) for mineral-associated organic matter (MAOM) formation and its interaction with microbial processes, such as microbial decomposition and microbial necromass production. We define and estimate the maximum sorption capacity Q(max) with quantile regressions between mineral-associated organic carbon (MAOC) and the clay plus silt (<20 mu m) content. In the COMISSION v2.0 model, plant- and microbial-derived dissolved organic matter (DOM) and dead microbial cell walls can sorb to mineral surfaces up to Q(max). MAOC can only be decomposed by microorganisms after desorption. We calibrated the COMISSION v2.0 model with data from ten different sites with widely varying textures and Q(max) values. COMISSION v2.0 was able to fit the MAOC and SOC depth profiles, as well as the respective C-14 gradients with soil depth across these sites. Using the generic set of parameters retrieved in the multi-site calibration, we conducted model experiments to isolate the effects of varying Q(max) point-of-entry of litter inputs, and soil temperature. Across the ten sites, the combination of depolymerization limitation of microorganisms due to substrate scarcity in the subsoil and the size of Q(max) explain C-14 depth gradients in OC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据