4.7 Article

When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 737, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.139895

关键词

Vis-NIR data mining; Spectral variation; SOC variance; Environmental-based learning; Spectral models

资金

  1. National Council for Scientific and Technological Development (CNPq) [431287/2016-3, 303901/2019-5]
  2. Foundation for Support of Research and Innovation (FAPESC) from Brazil's Ministry of Education [2012000094]

向作者/读者索取更多资源

More accurate models for the prediction of soil organic carbon (SOC) by visible-near-infrared (Vis-NIR) spectroscopy remains a challenging task, especially when the soil spectral libraries (SSL) is composed of soils with a high pedological variation. One proposition to increase the models accuracy is to reduce the SSL variance, which can be achieved by stratifying the library into sub-libraries. Thus, the main objective of this study was to evaluate whether the stratification of a SSL by environmental, pedological and Vis-NIR spectral criteria results in greater accuracy of spectroscopic models than to general models for prediction of SOC content. The performance of the models was evaluated considering the variance of soil components and sample number. In addition, we tested the effect of two spectral preprocessing techniques and two multivariate calibration methods on spectroscopic modeling. For these purposes, a SSL composed of 2471 samples from Southern Brazil was stratified based on i) physiographic region; ii) land-use/land-cover; iii) soil texture, and iv) spectral class. Two spectral processing techniques: Savitzky-Golay - 1st derivative (SGD) and continuum removed reflectance (CRR) and two multivariate methods (partial least squares regression - PLSR and Cubist) were used to fit the models. The best performances for the global and local models were achieved with the CRR spectral processing associated with the Cubist method. The stratification of the SSL in more homogeneous sample groups by environmental criteria (physiographic regions and land-use/land-cover) improved the accuracy of SOC predictions compared to pedological (soil texture) and Vis-NIR spectral (spectral classes) criteria. The reduction in the number of samples negatively affected the performance of models for sub-libraries with high pedological and spectral variation. Stratification criteria were proposed in a flowchart to assist in decision making in future studies. Our findings suggest the importance of sample balance across environmental, pedological and spectral strata, in order to optimize SOC predictions. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据