4.7 Article

Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization

期刊

CRYSTAL GROWTH & DESIGN
卷 16, 期 11, 页码 6531-6536

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.6b01229

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0010596]

向作者/读者索取更多资源

Metal-organic frameworks based on lithium inherit the unique chemical and structural features of the metal ion itself. While the monomeric lithium node, usually 4 connected, is very desirable for designing zeolite-type networks, the resulting lithium MOF usually has limited stability, especially for 3-connected nets due to the solvent termination. The conventional design strategy based on lithium aryloxide clusters makes use of phenol-type ligands for cluster formation and a separate bifunctional ligand for cross-linking, which also leads to 4-connected nets. By integrating the roles of cluster-formation and framework formation into a single ligand, 4-hydroxypyridine was previously shown to give a highly stable 8-connected framework. Still, its shortness and rigidity limit both the porosity and the type of framework topologies. In this work, we demonstrate the new chemical and structural features of lithium cubane clusters with an elongated ligand, which results in two high-connected 3-D framework materials characterized by self-penetration and self-polymerization, respectively, unlike the commonly observed interpenetration. Such a method provides a feasible path to tune both stability and porosity in lithium-based MOFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据