4.8 Article

Scalable Probes of Measurement-Induced Criticality

期刊

PHYSICAL REVIEW LETTERS
卷 125, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.125.070606

关键词

-

资金

  1. DARPA Driven and Nonequilibrium Quantum Systems program
  2. Simons Fellowship

向作者/读者索取更多资源

We uncover a local order parameter for measurement-induced phase transitions: the average entropy of a single reference qubit initially entangled with the system. Using this order parameter, we identify scalable probes of measurement-induced criticality that are immediately applicable to advanced quantum computing platforms. We test our proposal on a 1 + 1 dimensional stabilizer circuit model that can be classically simulated in polynomial time. We introduce the concept of a decoding light cone to establish the local and efficiently measurable nature of this probe. We also estimate bulk and surface critical exponents for the transition. Developing scalable probes of measurement-induced criticality in more general models may be a useful application of noisy intermediate scale quantum devices, as well as point to more efficient realizations of fault-tolerant quantum computation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据