4.7 Article

Metabolic mechanisms of indoxacarb resistance in field populations of Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae)

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2020.104636

关键词

Metabolism; Resistance mechanism; Detoxification; Cytochrome P450 monooxygenases; Esterases; Glutathione S-transferases

资金

  1. Michigan Project GREEEN
  2. Michigan Cherry Committee
  3. Michigan Apple Committee

向作者/读者索取更多资源

Synergism and metabolic studies were conducted to identify the resistance mechanism against indoxacarb in two Choristoneura rosaceana (Harris) field populations compared to a susceptible population. The synergism study was carried out using diet incorporation bioassay for indoxacarb and the three synergists PBO, DEM, and DEF. The metabolic study consists of indoxacarb in vitro reaction with fifth instar larvae 12,000 g midgut supernatant or with pre-inhibited (in vivo by the esterases inhibitor DEF) fifth instar larvae 12,000 g midgut supernatant at different incubation times. In both susceptible and cherry populations, only DEF significantly synergized indoxacarb with a synergism ratio (SR) of 6.5 and 22.6-fold respectively indicating an involvement of esterases in the both populations. In the apple population, all synergists PBO, DEM, and DEF significantly synergized indoxacarb with SR of 9.6, 7.7, and 285.6-fold respectively indicating a complex resistance case with the possible involvement of all three metabolic resistance mechanisms with the central role of esterase enzymes. In vitro, the indoxacarb (DPX-JW062) was very rapidly metabolized within 5 min into small molecules in the lower portion of the metabolic pathway when it reacted with the midgut supernatant of each population. None of the metabolites in the upper portion of the metabolic pathway were detected at any incubation time including the potent sodium channel blocker DCJW metabolite. The two field populations showed significantly higher rates of metabolism of DPX-JW062 compared to the susceptible population at five min of incubation and that may explain the presence of indoxacarb resistance. In the second part of the in vitro study, the bio-transformation of DPX-JW062 was remarkably decreased when it reacted with the pre-inhibited (by DEF) midgut supernatant of each population. Additionally, the degradation of metabolites in the upper portion of the metabolic pathway remarkably decreased, which resulted in accumulation of DCJW and MP819 metabolites. The accumulation of DCJW metabolite under the pre-inhibited midgut supernatants treatment provided a persuasive explanation of the synergistic impact of esterase inhibitor DEF on indoxacarb in C. rosaceana.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据