4.7 Article

Deep learning for symbols detection and classification in engineering drawings

期刊

NEURAL NETWORKS
卷 129, 期 -, 页码 91-102

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2020.05.025

关键词

Deep learning; YOLO; P&ID; Engineering drawings; Symbols recognition; GANs

资金

  1. Scotland Data Lab Innovation Centre, UK
  2. Oil and Gas Innovation Centre, UK
  3. DNV GL, Norway

向作者/读者索取更多资源

Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practices such as inventory, assets management, risk analysis, and other types of applications. However, processing and analysing these drawings is a challenging task. A typical diagram often contains a large number of different types of symbols belonging to various classes and with very little variation among them. Another key challenge is the class-imbalance problem, where some types of symbols largely dominate the data while others are hardly represented in the dataset. In this paper, we propose methods to handle these two challenges. First, we propose an advanced bounding-box detection method for localising and recognising symbols in engineering diagrams. Our method is end-to-end with no user interaction. Thorough experiments on a large collection of diagrams from an industrial partner proved that our methods accurately recognise more than 94% of the symbols. Secondly, we present a method based on Deep Generative Adversarial Neural Network for handling class-imbalance. The proposed GAN model proved to be capable of learning from a small number of training examples. Experiment results showed that the proposed method greatly improved the classification of symbols in engineering drawings. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据