4.6 Article

Novel insights into the disease transcriptome of human diabetic glomeruli and tubulointerstitium

期刊

NEPHROLOGY DIALYSIS TRANSPLANTATION
卷 35, 期 12, 页码 2059-2072

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ndt/gfaa121

关键词

chronic kidney disease; diabetic nephropathy; kidney biopsy; pathway analysis; transcriptomics

资金

  1. Stockholm County Council (ALF project)
  2. Strategic Research Program in Diabetes at Karolinska Institutet
  3. Center for Innovative Medicine (CIMED) Karolinska Institutet
  4. Swedish Kidney Foundation
  5. Margaretha af Ugglas Foundation
  6. Swedish Research Council
  7. Sahlgrenska University Hospital ALF Grant
  8. Inga-Britt and Arne Lundberg Research Foundation
  9. AstraZeneca

向作者/读者索取更多资源

Background. Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, affecting similar to 30% of the rapidly growing diabetic population, and strongly associated with cardiovascular risk. Despite this, the molecular mechanisms of disease remain unknown. Methods. RNA sequencing (RNAseq) was performed on paired, micro-dissected glomerular and tubulointerstitial tissue from patients diagnosed with DN [n = 19, 15 males, median (range) age: 61 (30-85) years, chronic kidney disease stages 1-4] and living kidney donors [n = 20, 12 males, median (range) age: 56 (30-70) years]. Results. Principal component analysis showed a clear separation between glomeruli and tubulointerstitium transcriptomes. Differential expression analysis identified 1550 and 4530 differentially expressed genes, respectively (adjusted P < 0.01). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses highlighted activation of inflammation and extracellular matrix (ECM) organization pathways in glomeruli, and immune and apoptosis pathways in tubulointerstitium of DN patients. Specific gene modules were associated with renal function in weighted gene co-expression network analysis. Increased messengerRNA (mRNA) expression of renal damage markers lipocalin 2 (LCN) and hepatitis A virus cellular receptor1 (HAVCR1) in the tubulointerstitial fraction was observed alongside higher urinary concentrations of the corresponding proteins neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in DN patients. Conclusions. Here we present the first RNAseq experiment performed on paired glomerular and tubulointerstitial samples from DN patients. We show that prominent disease-specific changes occur in both compartments, including relevant cellular processes such as reorganization of ECM and inflammation (glomeruli) as well as apoptosis (tubulointerstitium). The results emphasize the potential of utilizing high-throughput transcriptomics to decipher disease pathways and treatment targets in this high-risk patient population.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据