4.5 Article

Automated design for recognition of blood cells diseases from hematopathology using classical features selection and ELM

期刊

MICROSCOPY RESEARCH AND TECHNIQUE
卷 84, 期 2, 页码 202-216

出版社

WILEY
DOI: 10.1002/jemt.23578

关键词

Classification; Contrast Improvement; Features extraction; Features Selection; Hematopathology; White Blood Cells

向作者/读者索取更多资源

This research introduces a new method for white blood cell classification using feature selection and extreme learning machine (ELM), which improves classification accuracy through data augmentation and feature selection techniques.
In the human immune system, the white blood cells (WBC) creates bone and lymphoid masses. These cells defend the human body toward several infections, such as fungi and bacteria. The popular WBC types are Eosinophils, Lymphocytes, Neutrophils, and Monocytes, which are manually diagnosis by the experts. The manual diagnosis process is complicated and time-consuming; therefore, an automated system is required to classify these WBC. In this article, a new method is presented for WBC classification using feature selection and extreme learning machine (ELM). At the very first step, data augmentation is performed to increases the number of images and then implement a new contrast stretching technique name pixel stretch (PS). In the next step, color and gray level size zone matrix (GLSZM) features are calculated from PS images and fused in one vector based on the level of high similarity. However, few redundant features are also included that affect the classification performance. For handling this problem, a maximum relevance probability (MRP) based feature selection technique is implemented. The best-selected features computed from a fitness function are ELM in this work. All maximum relevance features are put to ELM, and this process is continued until the error rate is minimized. In the end, the final selected features are classified through Cubic SVM. For validation of the proposed method, LISC and Dhruv datasets are used, and it achieved the highest accuracy of 96.60%. From the results, it is clearly shown that the proposed method results are improved as compared to other implemented techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据