4.7 Article

Spatial abundance distribution of prokaryotes is associated with dissolved organic matter composition and ecosystem function

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 66, 期 3, 页码 575-587

出版社

WILEY
DOI: 10.1002/lno.11624

关键词

-

资金

  1. FQRNT student scholarship
  2. NSERC
  3. NSERC-CCAR

向作者/读者索取更多资源

This study utilizes empirical data and SpAD modeling to investigate the relationships among DOM compounds, metabolic processes, and prokaryotic diversity. Different SpAD taxonomic groups were found to be associated with specific organic compounds and metabolic rates. The study proposes a framework to bridge the gap between prokaryotic diversity, microbial ecology, and biogeochemistry across scales.
Diverse prokaryotic communities consume and transform a broad suite of molecules in the dissolved organic matter (DOM) pool, which controls major biogeochemical cycles. Despite methodological advancements that provide increasingly more detailed information on the diversity of both prokaryotic communities and DOM components, understanding how these two component parts are structured to influence ecosystem functioning remains a major challenge in microbial ecology. Using empirical data collected along a gradient of productivity in the Labrador Sea, we characterized relationships among DOM compounds, metabolic processing, and prokaryotic diversity by structuring prokaryotic communities using spatial abundance distribution (SpAD) modeling. We identified strong associations of different SpAD taxonomic groups with specific organic substrates as well as with metabolic rates. Amplicon sequence variants (ASVs) with more cosmopolitan distributions (i.e. normal-like) such as Bacteroidia were related to fresher DOM substrates such as free and combined amino acids whereas rare ASVs (i.e. logistic) like delta-proteobacteria were associated with complex forms of organic matter. In terms of ecosystem function, rates of respiration and production were most strongly predicted by the abundance of certain SpAD taxonomic groups. Given the importance and complexity of linking environmental conditions, prokaryotic community structure, and ecosystem function, we propose a framework to bridge the gap between prokaryotic diversity, microbial ecology, and biogeochemistry among methods and across scales. Our work suggests that SpAD modeling can be used as an intermediate step to link prokaryotic community structure to both finer DOM details and larger ecosystem scale processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据