4.8 Article

Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions

期刊

JOURNAL OF POWER SOURCES
卷 474, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228601

关键词

Extreme fast charging (XFC); Porosity; Tortuosity; Gravimetric energy density; LiMn0.6Mn0.2Co0.2O2; Diffusion length; Symmetric cells; Li metal plating

资金

  1. U.S. Department of Energy (DOE) [DE-AC05-00OR22725]
  2. Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO)

向作者/读者索取更多资源

Extreme fast charging capabilities along with high energy density of Li-ion batteries are the key factors to increase the adoption of electric vehicles while eliminating the problem of range anxiety. The U.S Department of Energy has a goal of <12 min charging time with energy density of >200 Wh kg(-1). A combined improvement in the electrode architecture, electrolyte properties, and separator membrane is necessary to achieve this goal. Cells with thin electrodes are capable of extreme fast charging at the expense of low energy density and high cost. Electrode engineering can maximize energy density. Here, the influence of porosity, mass loading and charging protocols on capacity and energy density and electrode kinetics are investigated under extreme fast charging conditions. Increasing the mass loading from 11.5 mg cm(-2) to 25 mg cm(-2) compromises the rate performance due to the mass transport limitation and underutilization of thick electrodes. Reducing the electrode porosity from 50% to 35% improves the rate performance ascribed to shorter Li ion diffusion length. Symmetric cells are cycled to verify the performance of the half cells, suggesting that Li metal plating is the rate limiting step under high current density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据