4.7 Article

Evaluation of the effect of dose change of Fe3O4 nanoparticles on electrochemical biosensor compatibility using hydrogels as an experimental living organism model

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 322, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.114574

关键词

Fe3O4 nanoparticles; Hydrogels; Maxwell-Wagner theory; Koop's theory; Electrochemical biosensor; Smith chart

资金

  1. Scientific Research Projects Unit of Nigde Omer Halisdemir University [FMT 2019/6-BAGEP]

向作者/读者索取更多资源

This study analyzed the morphological, structural, optical, and dielectric properties of hydrogels doped with different doses of Fe3O4 nanoparticles, revealing their relationship with technological applications. It was concluded that hydrogels with high doses of Fe3O4 NPs are suitable for electrochemical biosensors in bio-systems.
Morphological, structural, optical and dielectric properties, which provide important information about the technological applications of pure and different dose (2.5%, 5.0%, 7.5% and 10.0%) Fe3O4 nanoparticles (NPs) doped hydrogels were analyzed in detail in this study. The complex dielectric parameters of all the samples are related to the electrode/interface polarization (grain boundary), dielectric relaxation and grain effects in accordance with the Maxwell-Wagner theory and Brownian motion in the broadband frequency regions. Experimental plane plots of the complex electrical modulus for all the samples are explained by the Havriliak and Negami relaxation model represented by two relaxation times (alpha and gamma) associated with resistances created by grain boundary (alpha) and grain (gamma). In the high frequency region, complex electrical modulus plane plots of all the samples were compatible with the Cole-Cole relaxation model corresponding to the equivalent electrical circuit (RC) in the Smith Chart diagram. Koop's theory and electron hopping mechanism formed between Fe3+ and Fe2+ ions in the octahedral lattice are effective on the electrical conductivity values of the samples. As the molarity of Fe3O4 NPs increased, the logarithmic conductivity values of all samples, which a function of the angular frequency and defined by the Jonscher Power Law, Nearly Constant Loss and Super Linear Power Law conductivity mechanisms, were generally increased. From the experimental results, it was concluded that the hydrogels with high doses of Fe3O4 NPs can be used as an electrochemical biosensor in bio-systems since it has the high dielectric, capacitance, low impedance and conductivity values. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据