4.7 Article

Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 315, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.113769

关键词

Nanocomposite; Heavy metals; Adsorption kinetics; Isotherm; Water treatment

资金

  1. National Research Foundation of Korea (NRF) under the Korea Research Fellowship (KRF) program [2019H1D3A1A01102657]

向作者/读者索取更多资源

Herein, we showed that the graphene oxide with manganese ferrite (GO-MnFe2O4) possess great adsorption properties for the selective Pb2+ ions removal from the aqueous medium. Nanocomposite adsorbent was developed by one-pot hydrothermal method, using graphene oxide as a supporting material to minimize the aggregation of MnFe2O4. Also, GO possesses important role in the adsorption mechanism of Pb2+ through electrostatic/ionic interactions. The characterizations such as FT-IR, XPS, P-XRD, FE-SEM, and BET of the synthesized nanocomposite were carried out to assess the different properties such as functionalities, crystallinity, morphology, and surface area value, respectively. Thereafter, the adsorption performance of GO-MnFe2O4 nanocomposite was tested for the Pb2+ at various adsorption parameters including to contact time, solution pH, adsorbent dose, and concentration of initial Pb2+ in order to measure the optimum adsorption condition. Kinetic experiments suggest that the equilibrium attained in 30 min and followed a pseudo-second-order kinetic model. Adsorption isotherm model followed to Langmuir isotherms and gives a maximum adsorption capacity of 621.11 mg/g. The reusability tests exhibited good durability and good efficiency for repeated Pb2+ adsorptions with GO-MnFe2O4 nanocomposite. These results demonstrated that the GO-MnFe2O4 nanocomposite may be an attractive adsorbent having low-cost for the effectively Pb+2 removal of from the polluted water. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据