4.6 Article

Fabrication of bioactive corrosion-resistant polyaniline/TiO2 nanotubes nanocomposite and their application in orthopedics

期刊

JOURNAL OF MATERIALS SCIENCE
卷 55, 期 32, 页码 15602-15620

出版社

SPRINGER
DOI: 10.1007/s10853-020-05079-3

关键词

-

资金

  1. Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi, India [SB/S1/PC-14/2013]

向作者/读者索取更多资源

The long-term permanence of titanium implant was improved by incorporation of polyaniline on TiO2 nanotubes. The polyaniline incorporated TiO2 nanotubes (PANI-2/TNTA) has enhanced the bioactivity and corrosion resistance. Highly ordered nanotubes were formed on the titanium metal with an average tube diameter of similar to 85 nm which was confirmed by HR-SEM. The presence of anatase and rutile mixed phases was identified by XRD analysis. The formation of interfacial bonding between PANI and TNTA was confirmed by Raman and XPS analysis. The lower corrosion current density and higher polarization resistance (R-p) obtained for PANI-2/TNTA nanocomposite revealed the enhanced corrosion resistance behavior in physiological conditions. To ensure the durability of PANI-2/TNTA, the corrosion behavior was analyzed at different applied potentials using dynamic electrochemical impedance spectroscopy (DEIS). Up to 1 V, the higher impedance value was observed in Hanks' solution. The bioactivity of the PANI-2/TNTA nanocomposite was confirmed by the more-notable cell adhesion and proliferation of MG-63 osteoblast-like cells. PANI-2/TNTA has the ability to reduce implant-associated infections. The existence of the amine group is responsible for better biostability and antimicrobial activity. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据