4.7 Review

Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms

期刊

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
卷 63, 期 1, 页码 102-125

出版社

WILEY
DOI: 10.1111/jipb.13028

关键词

Arabidopsis; ethylene signaling; hormone crosstalk; rice

向作者/读者索取更多资源

Ethylene is a gaseous hormone that is essential for plant growth and stress responses. The signaling pathway of ethylene shows unique features in different plant species and recent studies have identified novel regulators and mechanisms in rice. Understanding the crosstalk between ethylene and other plant hormones is crucial for agricultural purposes.
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据