4.7 Article

Amplified fluorescence detection and adsorption of Au3+ by the fluorescent melamine formaldehyde microspheres incorporated with N and S co-doped carbon dots

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 405, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123978

关键词

Carbon dots; Melamine formaldehyde microspheres; Au3+; Fluorescence sensor; Adsorption

资金

  1. Fundamental Research Funds for the Central Universities [2172019KFYRCPY112]

向作者/读者索取更多资源

This study introduced a novel fluorescent microspheres for efficient detection and removal of Au3+, showcasing a potential application in catalytic reduction of environmental pollutants.
Gold is one of the potential toxic heavy metals. In the present study, Au3+ was detected and removed by newly-designed fluorescent microspheres (MF-CDs), i.e. melamine formaldehyde microspheres incorporated with N and S co-doped carbon dots (N,S-CDs). N,S-CDs played the role as sensing unites and melamine formaldehyde microspheres (MF) as carriers. When MF-CDs were attempted as the fluorescence probe, enhanced fluorescence sensing performance towards Au3+ was achieved with wider linear range (0.05-2 mu M) and lower limit of detection (31 nM) compared to the N,S-CDs probe. In addition, when MF-CDs were used as the adsorbent, the adsorption capacity towards Au3+ reached up to 1 mmol g(-1), about ten times more than that of MF. Moreover, the Au3+ adsorbed on the MF-CDs could be in-situ transferred to gold nanoparticle (AuNP), forming the immobilized nanocatalyst, i.e. MF-CDs-AuNP, which could further assist the reduction of 4-nitrophenol with acceptable reusability. This study paved an avenue to design the multifunctional materials for simultaneous detection, removal and recycling of environmental concerned pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据