4.7 Article

Synthesis of BiOBr/Ag3PO4 heterojunctions on carbon-fiber cloth as filter-membrane-shaped photocatalyst for treating the flowing antibiotic wastewater

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 575, 期 -, 页码 183-193

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.04.077

关键词

BiOBr/Ag3PO4; Carbon fiber cloth; Filter-membrane; Antibiotics; Flowing wastewater

资金

  1. National Natural Science Foundation of China [51773036, 51972056]
  2. Shanghai Shuguang Program [18SG29]
  3. Natural Science Foundation of Shanghai [18ZR1401700]
  4. Fundamental Research Funds for the Central Universities
  5. DHU Distinguished Young Professor Program

向作者/读者索取更多资源

Numerous nanosized photocatalysts have been demonstrated to treat antibiotic solutions efficiently in beakers, but plenty of antibiotics have been discharged to the flowing rivers. For photocatalytically degrading the flowing antibiotic wastewater, the prerequisite is to develop flexible large-scale filter-membrane with high photocatalytic activity. To solve this issue, with carbon fiber (CF) cloth as a flexible porous substrate, herein we have reported the in-situ growth of BiOBr/Ag3PO4 heterostructures. BiOBr nanosheets (thickness: similar to 10 nm, diameter: 0.5-1 mu m) and Ag3PO4 particles (size: 50-200 nm) are synthesized on CF cloth successively via a solvothermal-chemical deposition two-step strategy. CF/BiOBr/Ag3PO4 cloth displays excellent visible photoabsorption (edge: similar to 520 nm). Under visible-light illumination, CF/BiOBr/Ag3PO4 cloth (4 x 4 cm(2)) could degrade similar to 90.0% tetracycline hydrochloride (TCH) as a model of antibiotics in 30 min in a beaker. Especially, CF/BiOBr/Ag3PO4 cloth can be used as the filter-membrane to construct multiple photocatalytic-setup for degrading the flowing antibiotic wastewater. The removal efficiency of TCH goes up from 12.8% at the first grade to 89.6% at the sixth grade. Furthermore, the photocatalytic mechanism of CF/BiOBr/Ag3PO4 cloth and the possible decomposition pathway of TCH have been proposed based on simulation and experiment results. Therefore, the present work provides some insight for developing flexible filter-membrane-shaped photocatalysts for degrading the flowing wastewater. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles

Wei Cao, Yan Zhang, Zhun Shi, Ting Liu, Xinshan Song, Lisha Zhang, Po Keung Wong, Zhigang Chen

Summary: By decorating UiO-66-NH2 nanoparticles as a co-photocatalyst on carbon fibers, the MoS2-based nanocomposites show significantly improved adsorption and photocatalytic performance for eliminating pollutants. The material can efficiently adsorb and remove LVFX and Cr(VI) within 60 minutes, with a slight decline in performance after visible light irradiation for 4 cycles.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading flowing wastewater

Xiaofeng Shen, Yan Zhang, Zhun Shi, Shengdao Shan, Jianshe Liu, Lisha Zhang

Summary: The study developed a CF cloth with C3N4/CdS nanostructures as a filter-membrane-shaped photocatalyst, showing superior photocatalytic activity, especially in terms of the removal rates of dyes and pollutants. Additionally, possible reaction pathways were proposed, providing new insights for research in wastewater purification.

JOURNAL OF ALLOYS AND COMPOUNDS (2021)

Article Green & Sustainable Science & Technology

MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiberiTiO2-based weavable photocatalyst for removing pharmaceutical pollutants

Yan Zhang, Meiyu Xiong, Anran Sun, Zhun Shi, Bo Zhu, Daniel K. Macharia, Fang Li, Zhigang Chen, Jianshe Liu, Lisha Zhang

Summary: The study introduced a novel porous co-photocatalyst to decorate carbon fibers, which can efficiently remove pharmaceutical pollutants and exhibit enhanced performance under visible light irradiation.

JOURNAL OF CLEANER PRODUCTION (2021)

Article Chemistry, Physical

BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater

Ting Liu, Yan Zhang, Zhun Shi, Wei Cao, Lisha Zhang, Jianshe Liu, Zhigang Chen

Summary: This study presents a recyclable and efficient photocatalyst with broad-spectral-response constructed on carbon fiber cloth for flowing wastewater treatment. The photocatalyst exhibited high removal efficiencies of rhodamine B, acid orange 7, and tetracycline under visible light irradiation, outperforming traditional photocatalysts.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Engineering, Environmental

TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants

Yan Zhang, Anran Sun, Meiyu Xiong, Daniel K. Macharia, Jianshe Liu, Zhigang Chen, Maoquang Li, Lisha Zhang

Summary: Fabrication of weavable CF/TiO2/BiOI bundles on carbon fiber allows for strong and broad-spectrum photoabsorption, leading to superior adsorption and photodegradation efficiency for various pollutants. The reusable macroscopic photocatalyst retains excellent photocatalytic activity even after multiple cycles, showing potential for environmental purification applications.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Bismuth oxybromide/bismuth oxyiodide nanojunctions decorated on flexible carbon fiber cloth as easily recyclable photocatalyst for removing various pollutants from wastewater

Jiafeng Cai, Yan Zhang, Tianwei Qian, Xiaolong Li, Zhigang Chen, Lisha Zhang

Summary: A recyclable photocatalyst, consisting of BiOBr/BiOI nanojunctions on a flexible carbon fiber cloth substrate, was developed for efficient degradation of pollutants in wastewater under visible-light illumination. The photocatalyst exhibited superior performance compared to BiOBr alone, with high degradation rates of various pollutants and a significant reduction in chemical oxygen demand (COD) concentration. This recyclable catalyst holds great potential for wastewater purification.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Article Chemistry, Physical

Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter- membrane- shaped photocatalyst for degrading antibiotics

Tianwei Qian, Yan Zhang, Jiafeng Cai, Wei Cao, Ting Liu, Zhigang Chen, Jianshe Liu, Fang Li, Lisha Zhang

Summary: A recyclable photocatalyst with high adsorption and photocatalytic performance was developed by constructing a three-component photocatalyst on carbon fiber cloth, which effectively treated antibiotics in flowing sewage.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Engineering, Environmental

Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination

Congcong Li, Bo Zhu, Zixiao Liu, Jiangtong Zhao, Ruru Meng, Lisha Zhang, Zhigang Chen

Summary: This study presents the development of an anionic polyelectrolyte-based hydrogel with both photothermal characteristics for evaporating seawater and electrostatic properties for preventing solid-salt crystallization. The hydrogel exhibited high solar absorption efficiency and excellent evaporation performance, making it a promising candidate for solar-driven seawater desalination.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance

Yan Zhang, Wei Cao, Bo Zhu, Jiafeng Cai, Xiaolong Li, Jianshe Liu, Zhigang Chen, Maoquan Li, Lisha Zhang

Summary: This study successfully prepared an efficient and reusable photocatalyst by synthesizing ultrasmall Ti MOF nanodots on carbon fiber based MoS2. The nanodots showed improved surface area and generated more reactive oxygen species, resulting in enhanced pollutant removal performance. The easy-recyclable nanodots-based heterojunctions exhibited high stability and showed great potential for wastewater purification.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Article Energy & Fuels

Watermelon Flesh-Derived Carbon Aerogel with Hierarchical Porous Structure for Interfacial Solar Steam Generation

Bo Zhu, Jiangtong Zhao, Yangfan Meng, Zixiao Liu, Nuo Yu, Lisha Zhang, Zhigang Chen

Summary: Solar-enabled interfacial steam generation is hindered by high material cost and low evaporation rate. In this study, a 3D carbon aerogel (CA) with hierarchical pores was prepared and utilized as an efficient photothermal material for seawater desalination. The CA showed broad and strong light absorption, and when incorporated into a 3D evaporator, exhibited high evaporation rate and long-term stability under simulated sunlight.

SOLAR RRL (2022)

Article Chemistry, Physical

Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS2/N-doped carbon anode for potassium-ion battery

Panpan Zhang, Xu Wang, Yangyang Yang, Haifeng Yang, Chunsheng Lu, Mingru Su, Yu Zhou, Aichun Dou, Xiaowei Li, Xiaochuan Hou, Yunjian Liu

Summary: In this study, the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2HMoS2/NC was investigated using Cobalt (Co) as an example. Co doping was found to effectively improve the electronic conductivity and active site areas of 2H-MoS2/NC at different positions, optimizing the adsorption and diffusion capability of potassium ions. Furthermore, the study revealed the optimal roles of different types of nitrogen atoms in kinetic adsorption, diffusion, and interfacial stability of potassium ions. These findings provide guidance for the experimental design of high rate 2H-MoS2/NC electrode materials and the optimal design of other functional composite materials.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution

Zeeshan Ajmal, Mahmood Ul Haq, Shahid Zaman, M. K. Al-Muhanna, Anuj Kumar, Mohammed M. Fadhali, Siwar Ben Hadj Hassine, Muhammas Qasim, K. F. Alshammari, Ghulam Abbas Ashraf, Abdul Qadeer, Adil Murtaza, Sulaiman Al-Sulaimi, Huaqiang Zeng

Summary: This study presents a novel heterojunction structure (SrTiO3/CN-TAL10.0) for enhanced photocatalytic water splitting (PWS). The incorporation of thiophenedicarboxaldehyde (TAL) through copolymerization significantly improves the photocatalytic activity of carbon nitride (CN) while maintaining its photostability performance. The optimized composition allows efficient isolation of photoinduced charge carriers and enhanced charge transport, resulting in a remarkable increase in overall photocatalytic efficiency.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization

Angela Arnosa-Prieto, Patricia Diaz-Rodriguez, Manuel A. Gonzalez-Gomez, Pelayo Garcia-Acevedo, Lisandra de Castro-Alves, Yolanda Pineiro, Jose Rivas

Summary: Macrophages can exhibit different phenotypes depending on the microenvironment and the characteristics of magnetic iron oxide nanoparticles (MNPs). This study demonstrates that the concentration and morphology of MNPs can influence the polarization of macrophages. The findings have implications for therapeutics targeting tissue regeneration and tumor progression.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance

Yu Fang, Cheng-Ye Zhu, Hao-Cheng Yang, Chao Zhang, Zhi-Kang Xu

Summary: This study demonstrates the advantages of vacuum-assisted interfacial polymerization (VAIP) in fabricating polyimide nanofiltration membranes. By using vacuum filtration, aqueous solutions of PIP can be evenly distributed on different microfiltration substrates, leading to the fabrication of uniform and ultra-thin polyamide layers with excellent performance. The membranes exhibit high rejection rates and water permeance, as well as satisfactory long-term stability.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Comparing polymer-surfactant complexes to polyelectrolytes

Isaac J. Gresham, Edwin C. Johnson, Hayden Robertson, Joshua D. Willott, Grant B. Webber, Erica J. Wanless, Andrew R. J. Nelson, Stuart W. Prescott

Summary: Understanding the interactions between polymers and surfactants is crucial for optimizing commercial systems. This study tested the behavior of polymer-surfactant systems, revealing that they do not behave like polyelectrolytes in the presence of salt. Additionally, the structure of polymer-surfactant complexes under confinement differs from that of polyelectrolytes.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics

Yunxiao Xie, Cui Liu, Jie Zhang, Yan Li, Bin Li, Shilin Liu

Summary: This study aimed to improve the microstructure and rheological properties of W/W Pickering emulsions by crosslinking sodium alginate at the water-water interface, thereby enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes

Sang Ho Lee, Yige Sun, Patrick S. Grant

Summary: This research developed an effective approach to enhance the charging rates of lithium ion batteries (LIBs) by strategically incorporating carbon nanotube (CNT) conductivity boosters into Li4Ti5O12 (LTO) electrodes. Multi-layer architectures comprising CNT-rich and CNT-free LTO electrode layers were manufactured using a layer-by-layer spray coating method to promote charge transfer kinetics of high mass loading electrodes. The best performing multi-layer was paired with a spray-coated LiFePO4 (LFP) positive electrode, resulting in attractive power performance that outperformed conventional LTO || LFP combinations.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Defect engineering induces Mo-regulated Co9Se8/FeNiSe heterostructures with selenium vacancy for enhanced electrocatalytic overall water splitting in alkaline

Jingwei Liang, Shaobin Li, Fengbo Li, Li Zhang, Yufeng Jiang, Huiyuan Ma, Kun Cheng, Liang Qing

Summary: A molybdenum-regulated self-supporting electrode material with rich vacancy defects has been successfully synthesized and shows exceptional catalytic activities and stability for electrocatalytic overall water splitting. This study provides a new perspective for the design and synthesis of non-precious metal bifunctional electrocatalysts.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Surfactant-free microemulsions (SFMEs) as a template for porous polymer synthesis

Jonas Blahnik, Jennifer Schuster, Rainer Mueller, Eva Mueller, Werner Kunz

Summary: This study investigates the relationship between the morphology of PMMA monopolymers and PMMA-PHEMA copolymers with the expected nature of surfactant-free microemulsions (SFMEs) before polymerization. It is found that previously mesostructured, surfactant-free mixtures can produce porous polymers of different morphologies, while unstructured, oil-rich regions lead to solid, transparent polymers without nanostructured morphologies. Additionally, a surfactant-based reference system shows similar phase behavior and polymer morphologies as the comparable surfactant-free system, indicating the importance of the hydrotropic behavior of HEMA in this system.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead

Zheng-Fen Pu, Wen-Zhi She, Rong Sheng Li, Qiu-Lin Wen, Bi-Chao Wu, Chun-Hua Li, Jian Ling, Qiue Cao

Summary: This study synthesized two framework-isomeric covalent organic frameworks (COFs) and discovered that the light scattering signal of COFs can be used for the analytical detection of lead ions. By controlling synthesis conditions and introducing regulators, the morphology of COFs could be controlled and framework-isomeric COFs could be precisely synthesized.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Preparation and dynamic color-changing study of fluorescent polymer nanoparticles for individualized and customized anti-counterfeiting application

Yuchen Weng, Ying Hong, Jingyu Deng, Sicheng Cao, Li-Juan Fan

Summary: This paper reports the preparation of dynamic color-changing fluorescent polymer nanoparticles (PNPs) by constructing a fluorescence resonance energy transfer (FRET) pair. The PNPs show excellent anti-counterfeiting effects and reproducibility. The study demonstrates a promising encryption strategy that can achieve multiple outputs with simple operation.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range

Guodong Liu, Zijian Wang, Jianing Wang, Hanbin Liu, Zhijian Li

Summary: This study investigates the combination of multicolor switchable polyaniline (PANI) electrode and 1-methyl-4,4'-bipyridyl iodide (MBI), which demonstrates superior optical properties in visible and near-infrared light modulation, as well as excellent electrochemical performances. This combination can be used to develop novel electrochromic devices for applications in smart packaging, smart labels, and flexible smart windows.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Facile constructing Ti3C2Tx/TiO2@C heterostructures for excellent microwave absorption properties

Huying Yan, Yang Guo, Xingzhi Bai, Jiawei Qi, Haipeng Lu

Summary: By modifying Ti3C2Tx through heterogeneous interface engineering, optimized impedance matching is achieved, leading to enhanced electromagnetic wave absorption performance.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking μm-sized cell structures

Kehu Zhang, Yang Zhou, Silvia Moreno, Simona Schwarz, Susanne Boye, Brigitte Voit, Dietmar Appelhans

Summary: This article presents an advanced crosslinking strategy to fabricate clustered polymersomes using host-guest interactions. By controlling the input of crosslinker and environmental conditions, reversible aggregation and disassembly of these polymersomes can be achieved. The size and structure of these clustered polymersomes can be regulated and visualized through a fluorescent enzymatic cascade reaction.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation

Junjie Xu, Weixiong Huang, Ruiling Li, Li Li, Jinjin Ma, Jiaou Qi, Haiyan Ma, Min Ruan, Lilin Lu

Summary: In this study, a potassium doped palladium catalyst was developed for acetylene hydrogenation, showing excellent catalytic performance and durability. The doping of potassium effectively weakened the adsorption of ethylene, improved ethylene selectivity, and lowered the barriers of hydrogen activation and transfer reactions.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)