4.7 Article

Characterization of Fecal Microbiota with Clinical Specimen Using Long-Read and Short-Read Sequencing Platform

期刊

出版社

MDPI
DOI: 10.3390/ijms21197110

关键词

16S rRNA; gut microbiota; MinION; MiSeq

资金

  1. Ministry of Science and Technology [MOST108-2320-B-038-034]
  2. Industrial Technology Research Institute, Taiwan [A108-088]

向作者/读者索取更多资源

Accurate and rapid identification of microbiotic communities using 16S ribosomal (r)RNA sequencing is a critical task for expanding medical and clinical applications. Next-generation sequencing (NGS) is widely considered a practical approach for direct application to communities without the need for in vitro culturing. In this report, a comparative evaluation of short-read (Illumina) and long-read (Oxford Nanopore Technologies (ONT)) platforms toward 16S rRNA sequencing with the same batch of total genomic DNA extracted from fecal samples is presented. Different 16S gene regions were amplified, bar-coded, and sequenced using the Illumina MiSeq and ONT MinION sequencers and corresponding kits. Mapping of the sequenced amplicon using MinION to the entire 16S rRNA gene was analyzed with the cloud-based EPI2ME algorithm. V3-V4 reads generated using MiSeq were aligned by applying the CLC genomics workbench. More than 90% of sequenced reads generated using distinct sequencers were accurately classified at the genus or species level. The misclassification of sequenced reads at the species level between the two approaches was less substantial as expected. Taken together, the comparative results demonstrate that MinION sequencing platform coupled with the corresponding algorithm could function as a practicable strategy in classifying bacterial community to the species level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据