4.7 Article

Sequence analysis of Ricinus communis small heat-shock protein (sHSP) subfamily and its role in abiotic stress responses

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 152, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2020.112541

关键词

Abiotic stress; Oilseed crop; Regulatory mechanisms; Tolerance

资金

  1. UFBA [11301, EDITAL PROPCI/PROPG 004/2016]
  2. FAPESB [INT007/2014]
  3. CNPq [200745/2011-5, 400825/2014-7, 164829/2015-6]
  4. CAPES

向作者/读者索取更多资源

Small heat shock proteins (sHSPs) possess major roles in plant defense mechanisms towards abiotic stresses. sHSPs act as molecular chaperones providing the necessary tools to sustain cellular homeostasis under adverse conditions. sHSP genes display specific expression signatures, which depend on tissue-specificity, developmental stage and the nature of the abiotic stress. Despite the fact that Ricinus communis is an important oilseed crop with large socioeconomic impact on small family farmers in semi-arid regions worldwide, the characterization of RcsHSP genes and their possible contribution to plant survival under harsh environmental conditions has not been addressed. Hence, this study aimed at characterizing the R. communis sHSP subfamily, through phylogeny, gene structure, duplication, and expression profile analysis, as well as by characterizing Arabidopsis thaliana seeds overexpressing RcsHSP genes. We identified 41 RcsHSP genes with the a-crystallin domain and compatible molecular weight (< 43 kDa). The RcsHSP subfamily showed different homology levels with sHSP genes from other plant species, suggesting the occurrence of specific gene expansion and loss. The RcsHSP subfamily was classified according to the cellular locations of the genes, which included cytosolic, chloroplastic, mitochondrial, and endoplasmic reticulum groups. Ten putative motifs were found among RcsHSP genes, but only motifs 4, 6 and 8 were sHSP protein domains. The RcsHSP subfamily showed 19 genes produced by tandem duplication events, which might have been crucial for RcsHSP diversification and acquisition of tolerance in R. communis. Gene expression analysis showed that the RcsHSP subfamily possesses different regulatory mechanisms in response to various abiotic stresses. Additionally, overexpression of RcsHSP genes in A. thaliana was followed by enhanced SOD activity and higher content of osmoprotectants, which ultimately led to enhanced seed germination under a variety of abiotic stresses. Our results may contribute to breeding programs aiming at developing high tolerant R. communis plants, providing economic and social support for farmers in semiarid areas worldwide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据