4.7 Article

Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes

期刊

BMC GENOMICS
卷 16, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s12864-015-1347-1

关键词

Transposable elements; Fungi; Repeat induced point mutation; C5-methyltransferase

向作者/读者索取更多资源

Background: Transposable Elements (TEs) are key components that shape the organization and evolution of genomes. Fungi have developed defense mechanisms against TE invasion such as RIP (Repeat-Induced Point mutation), MIP (Methylation Induced Premeiotically) and Quelling (RNA interference). RIP inactivates repeated sequences by promoting Cytosine to Thymine mutations, whereas MIP only methylates TEs at C residues. Both mechanisms require specific cytosine DNA Methyltransferases (RID1/Masc1) of the Dnmt1 superfamily. Results: We annotated TE sequences from 10 fungal genomes with different TE content (1-70%). We then used these TE sequences to carry out a genome-wide analysis of C to T mutations biases. Genomes from either Ascomycota or Basidiomycota that were massively invaded by TEs (Blumeria, Melampsora, Puccinia) were characterized by a low frequency of C to T mutation bias (10-20%), whereas other genomes displayed intermediate to high frequencies (25-75%). We identified several dinucleotide signatures at these C to T mutation sites (CpA, CpT, and CpG). Phylogenomic analysis of fungal Dnmt1 MTases revealed a previously unreported association between these dinucleotide signatures and the presence/absence of sub-classes of Dnmt1. Conclusions: We identified fungal genomes containing large numbers of TEs with many C to T mutations associated with species-specific dinucleotide signatures. This bias suggests that a basic defense mechanism against TE invasion similar to RIP is widespread in fungi, although the efficiency and specificity of this mechanism differs between species. Our analysis revealed that dinucleotide signatures are associated with the presence/absence of specific Dnmt1 subfamilies. In particular, an RID1-dependent RIP mechanism was found only in Ascomycota.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据