4.2 Article

Immobilization of Cr(VI) by sulphate green rust and sulphidized nanoscale zerovalent iron in sand media: batch and column studies

期刊

GEOCHEMICAL TRANSACTIONS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12932-020-00073-9

关键词

Sulphate green rust; Sulphidized nZVI; Hexavalent chromium; Chromate; Packed bed columns; Reduction; Remediation

资金

  1. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant [675219]

向作者/读者索取更多资源

Chromate, Cr(VI), contamination in soil and groundwater poses serious threat to living organisms and environmental health worldwide. Sulphate green rust (GR(SO4)), a naturally occurring mixed-valent iron layered double hydroxide has shown to be highly effective in the reduction of Cr(VI) to poorly soluble Cr(III), giving promise for its use as reactant for in situ remedial applications. However, little is known about its immobilization efficiency inside porous geological media, such as soils and sediments, where this reactant would ultimately be applied. In this study, we tested the removal of Cr(VI) by GR(SO4)in quartz sand fixed-bed column systems (diameter x length = 1.4 cm x 11 cm), under anoxic conditions. Cr(VI) removal efficiency (relative to the available reducing equivalents in the added GR(SO4)) was determined by evaluating breakthrough curves performed at different inlet Cr(VI) concentrations (0.125-1 mM) which are representative of Cr(VI) concentrations found at contaminated sites, different flow rates (0.25-3 ml/min) and solution pH (4.5, 7 and 9.5). Results showed that (i) increasing Cr(VI) inlet concentration substantially decreased Cr(VI) removal efficiency of GR(SO4), (ii) flow rates had a lower impact on removal efficiencies, although values tended to be lower at higher flow rates, and (iii) Cr(VI) removal was enhanced at acidic pH conditions compared to neutral and alkaline conditions. For comparison, Cr(VI) removal by sulphidized nanoscale zerovalent iron (S-nZVI) in identical column experiments was substantially lower, indicating that S-nZVI reactivity with Cr(VI) is much slower compared to GR(SO4). Overall, GR(SO4)performed reasonably well, even at the highest tested flow rate, showing its versatility and suitability for Cr(VI) remediation applications in high flow environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据