4.7 Article

High pressure/high temperature multiphase simulations of dodecane injection to nitrogen: Application on ECN Spray-A

期刊

FUEL
卷 275, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.117871

关键词

Fuel injection; Real-fluid thermodynamics; Large Eddy simulation; Multiphase flows

资金

  1. European Union [748784]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]
  3. Marie Curie Actions (MSCA) [748784] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

The present work investigates the complex phenomena associated with pressure/high temperature dodecane injection for the Engine Combustion Network (ECN) Spray-A case, employing more elaborate thermodynamic closures, to avoid well known deficiencies concerning density and speed of sound prediction using traditional cubic models. A tabulated thermodynamic approach is proposed here, based on log(10)(p)-T tables, providing very high accuracy across a large range of pressures, spanning from 0 to 2500 bar, with only a small number of interpolation points. The tabulation approach is directly extensible to any thermodynamic model, existing or to be developed in the future. Here NIST REFPROP properties are used, combined with PC-SAFT Vapor-Liquid-Equilibrium to identify the liquid in mixtures penetration, hence avoiding the use of an arbitrary threshold for mass fraction. Identified liquid and vapour penetration are compared against experimental data from the ECN database showing a good agreement, within approximately 3-8% for axial penetration of liquid, 2% for vapor axial penetration and within experimental uncertainty for radial distribution of mass fraction. Analysis of the vortex evolution indicates that driving mechanisms behind the jet break-up are vortex tilting/stretching, then baroclinic torque, leading to Rayleigh-Taylor instabilities, closely followed by vortex dilation and finally viscous effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据