4.7 Article

Modelling nitrogen and light sharing in pea-wheat intercrops to design decision rules for N fertilisation according to farmers' expectations

期刊

FIELD CROPS RESEARCH
卷 255, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2020.107865

关键词

Intercrop; Light; Nitrogen; Fertilisation; Scenarios

类别

资金

  1. ADEME (Agence de l'Environnement et de la Maitrise de l'Energie, France)
  2. Conseil General of Maine-et-Loire
  3. UNIP (Union National des plantes riches en Proteines, France)

向作者/读者索取更多资源

Cereal-legume intercropping has gained increased interest in Europe. Nevertheless, performance and especially the percentage of each species at harvest are often considered highly variable. Nitrogen (N) fertilisation can be a relevant driving factor affecting the percentage of each species at harvest. Soil N availability influences competition for light and nitrogen in cereal-legume intercrops. However, management of N fertilisation still remains unclear for intercrops. Few references on the effects of a range of strategies of N fertilisation are available to guide farmers with relevant decision rules considering their expectations. Here, a modelling approach was proposed to simulate interactions between light and N acquisition of a pea-wheat intercrop and to test different scenarios for the management of such intercrops. A model (Azodyn-IC) was built resulting from the combination of two existing individual-crop models (AZODYN and AFISOL) and by applying rules of light and soil inorganic nitrogen sharing between the intercropped pea and wheat. Evaluation of the model outputs with experimental data showed satisfactory predictions of the studied variables (N accumulation, LAI, and crop dry weight). The model validated both resource sharing and light-N interactions. Furthermore, the model was able to respond to increases in inorganic N availability based upon straightforward formalisms. Simulating unmeasured variables, such as root growth and light interception and use by each species, improved our understanding of the relative dominance of each species for acquiring resources. Eventually, the model was used to simulate different scenarios of N fertilisation over 26 years of climatic data to account for climatic variability. We demonstrated the interest of such a modelling approach to design decision rules of N fertilisation according to farmers' expectations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据