4.3 Article

Phase-field modelling of 2D island growth morphology in chemical vapor deposition

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 43, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1140/epje/i2020-11981-8

关键词

Topical issue; Branching Dynamics at the Mesoscopic Scale

向作者/读者索取更多资源

The rich island morphology of two-dimensional (2D) materials during chemical vapor deposition (CVD) growth process is studied using a computational model based on a Burton-Cabrera-Frank (BCF) type crystal growth theory. A previously formulated phase-field (PF) model for the BCF crystal growth process is employed to investigate the effect of various growth conditions, such as the concentration of absorbed atoms on the substrate and the growth temperature, that have been experimentally known to significantly impact the island morphology. It is shown that, within this simple model, the rich morphology of 2D islands in CVD growth can be well reproduced. With increasing substrate temperature, the 2D island changes from dendritic to compact shape. When considering the energy difference between the zigzag and the armchair edges of the 2D island, most commonly known morphologies, from quasi-sixfold compact islands to spiky triangular and compact triangular shapes, are observed in the model. Growth mechanisms associated with different island shapes and potential model improvements are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据