4.7 Article

Parametric CAD modeling: An analysis of strategies for design reusability

期刊

COMPUTER-AIDED DESIGN
卷 74, 期 -, 页码 18-31

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2016.01.003

关键词

CAD reusability; Parametric modeling; Modeling methodologies; Design intent

向作者/读者索取更多资源

CAD model quality in parametric design scenarios largely determines the level of flexibility and adaptability of a 3D model (how easy it is to alter the geometry) as well as its reusability (the ability to use existing geometry in other contexts and applications). In the context of mechanical CAD systems, the nature of the feature-based parametric modeling paradigm, which is based on parent-child interdependencies between features, allows a wide selection of approaches for creating a specific model. Despite the virtually unlimited range of possible strategies for modeling a part, only a small number of them can guarantee an appropriate internal structure which results in a truly reusable CAD model. In this paper, we present an analysis of formal CAD modeling strategies and best practices for history-based parametric design: Delphi's horizontal modeling, explicit reference modeling, and resilient modeling. Aspects considered in our study include the rationale to avoid the creation of unnecessary feature interdependencies, the sequence and selection criteria for those features, and the effects of parent/child relations on model alteration. We provide a comparative evaluation of these strategies in the form of a series of experiments using three industrial CAD models with different levels of complexity. We analyze the internal structure of the models and compare their robustness and flexibility when the geometry is modified. The results reveal significant advantages of formal modeling methodologies, particularly resilient techniques, over non-structured approaches as well as the unexpected problems of the horizontal strategy in numerous modeling situations. (C)2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据